16 Clinical Trials for Various Conditions
This study is a first-in-human (FIH) Phase 1 study of BGB-B2033 to assess the safety, tolerability, pharmacokinetics (PK), pharmacodynamics, and preliminary antitumor activity of the BGB-B2033 in participants with advanced or metastatic hepatocellular carcinoma (HCC), alpha-fetoprotein (AFP)-producing gastric cancer (GC), extragonadal yolk sac tumors, non-dysgerminomas, or glypican-3 (GPC3)-positive squamous non-small cell lung cancer (NSCLC). The study will also identify the recommended Phase 2 dose (RP2D) of BGB-B2033 alone and in combination with tislelizumab for subsequent studies. BGB-B2033 will be administered by intravenous infusion. The Phase 1 study will be conducted in 2 parts: Part A (Monotherapy Dose Escalation and Safety Expansion) and Part B (Combination Dose Escalation and Safety Expansion).
RATIONALE: Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well sunitinib works in treating patients with metastatic germ cell tumors that have relapsed or not responded to treatment.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This randomized phase III trial is comparing two different combination chemotherapy regimens to see how well they work in treating patients with stage II or stage III non-seminomatous germ cell tumors.
RATIONALE: Drugs used in chemotherapy, such as ifosfamide, cisplatin, paclitaxel, and vinblastine, work in different ways to stop tumor cells from dividing so they stop growing or die. It is not yet known whether ifosfamide and cisplatin are more effective when combined with paclitaxel or vinblastine in treating germ cell tumors. PURPOSE: This randomized phase III trial is studying paclitaxel, ifosfamide, and cisplatin to see how well they work compared to vinblastine, ifosfamide, and cisplatin in treating men with progressive or recurrent metastatic germ cell tumors.
This phase III trial studies how well active surveillance help doctors to monitor subjects with low risk germ cell tumors for recurrence after their tumor is removed. When the germ cell tumor has spread outside of the organ in which it developed, it is considered metastatic. Drugs used in chemotherapy, such as bleomycin, carboplatin, etoposide, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. The trial studies whether carboplatin or cisplatin is the preferred chemotherapy to use in treating metastatic standard risk germ cell tumors.
This randomized phase III trial studies how well standard-dose combination chemotherapy works compared to high-dose combination chemotherapy and stem cell transplant in treating patients with germ cell tumors that have returned after a period of improvement or did not respond to treatment. Drugs used in chemotherapy, such as paclitaxel, ifosfamide, cisplatin, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a stem cell transplant stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim or pegfilgrastim, and certain chemotherapy drugs, helps stem cells move from the bone marrow to the blood so they can be collected and stored. Chemotherapy is then given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. It is not yet known whether high-dose combination chemotherapy and stem cell transplant are more effective than standard-dose combination chemotherapy in treating patients with refractory or relapsed germ cell tumors.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
RATIONALE: Drugs used in chemotherapy, such as cisplatin, ifosfamide, and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. PURPOSE: This phase II trial is studying the side effects and how well giving combination chemotherapy together with pegfilgrastim works in treating patients with previously untreated germ cell tumors.
This phase II trial is studying how well giving combination chemotherapy works in treating young patients with recurrent or resistant malignant germ cell tumors. Drugs used in chemotherapy, such as paclitaxel, ifosfamide, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells.
RATIONALE: Drugs used in chemotherapy, such as paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Lapatinib may help paclitaxel work better by making tumor cells more sensitive to the drug. Lapatinib may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving lapatinib together with paclitaxel may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of lapatinib when given together with paclitaxel in treating patients with advanced solid tumors.
RATIONALE: Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase II trial is studying how well ixabepilone works in treating patients with metastatic germ cell tumors that are refractory to cisplatin.
This phase III trial is studying surgery followed by combination chemotherapy to see how well it works in treating children with germ cell tumors that are not located in the head. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug, and giving them after surgery, may kill any remaining tumor cells following surgery. It is not yet known whether combination chemotherapy is effective in decreasing the recurrence of childhood germ cell tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase II trial is studying how well giving combination chemotherapy together with bone marrow transplantation or peripheral stem cell transplantation works in treating patients with relapsed germ cell cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. It is not known whether combining chemotherapy with bone marrow or peripheral stem cell transplantation is more effective than combination chemotherapy alone in treating men with germ cell tumors. PURPOSE: Randomized phase III trial to compare the effectiveness of combination chemotherapy with or without bone marrow or peripheral stem cell transplantation in treating men with previously untreated germ cell tumors.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of cisplatin and etoposide in treating patients with CNS tumors.
RATIONALE: Germ cell tumors (GCT) are highly sensitive to chemotherapy such that even with metastatic disease at diagnosis, many patients can be cured. Patients who fall into the poor risk category or others who relapse can be successfully salvaged with high dose chemotherapy and autologous stem cell transplant (AuSCT). As in other diseases such as myeloma, sequential high dose chemotherapy and AuSCT may improve overall and disease free survival. PURPOSE: Because prior investigations in GCT suggest that a subset of high risk or relapsed patients may be cured with sequential cycles of high dose chemotherapy and AuSCT, we propose investigating how well non-cross resistant conditioning regimens work in treating patients with relapsed or high risk GCT.