583 Clinical Trials for Various Conditions
This clinical trial compares the effect of an automated personalized physical activity intervention supported by wearable technology to standard of care on physical activity levels and quality of life in patients with stage II- IV ovarian, primary peritoneal, fallopian tube cancer or endometrial cancer that is newly diagnosed. Physical activity is a modifiable risk factor for the prevention and treatment of many diseases. In fact, increased levels of physical activity have been shown to decrease the risk of some cancers as well as increase overall survival in some cancers. Currently, standard of care guidelines include participation in at least 150 minutes of moderate exercise weekly. An automated personalized physical activity intervention may increase physical activity, enhance quality of life, and improve physical function and daily living activities compared to standard recommendations in patients with stage II-IV ovarian, primary peritoneal, fallopian tube or newly diagnosed endometrial cancer. This trial also evaluates the impact of physical activity on the gut microbiome and immune function. The microbiome is the collection of tiny organisms, like bacteria, that live in and on the body, especially places like the gut. These microorganisms play an important role in health. Information gathered from this study may help understand how the gut microbiome and physical activity influences the immune system in patients with stage II-IV ovarian, primary peritoneal, fallopian tube or newly diagnosed endometrial cancer.
This phase II trial tests whether pegylated SN-38 conjugate PLX038 (PLX038) works to shrink tumors in patients with ovarian, primary peritoneal, and fallopian tube cancers that has spread from where it first started (primary site) to other places in the body (metastatic). PLX038 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase III trial compares minimally invasive surgery (MIS) to laparotomy in treating patients with stage IIIC-IV ovarian, primary peritoneal, or fallopian tube cancer who are receiving chemotherapy before and after surgery (neoadjuvant chemotherapy). MIS is a surgical procedure that uses small incision(s) and is intended to produce minimal blood loss and pain for the patient. Laparotomy is a surgical procedure which allows the doctors to remove some or all of the tumor and check if the disease has spread to other organs in the body. MIS may work the same or better than standard laparotomy after chemotherapy in prolonging the return of the disease and/or improving quality of life after surgery.
This phase I/II trial studies the side effects and best dose of olaparib and entinostat and to see how well they work in treating patients with ovarian, primary peritoneal, or fallopian tube cancers that have come back or do not respond to platinum-based chemotherapy. Olaparib and entinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well physical activity monitored by Fitbit Charge 2 works in improving quality of life in participants with ovarian, primary peritoneal, or fallopian tube cancer that has come back. A modern, state of the art activity tracking device (Fitbit Charge 2) may help to measure physical activity, heart rate, and sleep pattern, and may help doctors to learn whether physical activity level has any relationship to energy level, sleep duration and quality, toxicity from chemotherapy, immune cells in blood, and bacterial composition in gut.
This phase Ib trial studies the best dose and side effects of niraparib and copanlisib in treating patients with endometrial, ovarian, primary peritoneal, or fallopian tube cancer that has come back. Niraparib and copanlisib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well adavosertib with or without olaparib work in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back (recurrent). Adavosertib and olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase II trial studies how well modified vaccinia virus ankara vaccine expressing p53 (p53MVA) and pembrolizumab work in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back (recurrent). Vaccines made from a gene-modified virus may help the body build an effective immune response to kill tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving p53MVA and pembrolizumab together may work better in treating patients with ovarian, primary peritoneal, or fallopian tube cancer.
This phase II trial studies how well durvalumab and tremelimumab work in treating participants with ovarian, primary peritoneal, or fallopian tube cancer that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as durvalumab and tremelimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether give durvalumab and tremelimumab in combination or sequential administration works better in treating participants with ovarian, primary peritoneal, or fallopian tube cancer.
This phase I trial studies the side effects of genetically modified T cells and decitabine in treating patients with recurrent or refractory epithelial or non-epithelial ovarian, primary peritoneal, or fallopian tube cancer that has come back or has not responded to previous treatments. White blood cells called T cells are collected via a process called leukapheresis, genetically modified to recognize and attack tumor cells, then given back to the patient. Decitabine may induce and increase the amount of the target protein NY-ESO-1 available on the surface of tumor cells. Giving genetically modified T cells and decitabine may kill more tumor cells.
This phase II trial studies the side effects of PD 0360324 and cyclophosphamide and to see how well they work in treating patients with high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancer that has come back after a period of improvement. Immunotherapy with monoclonal antibodies, such as PD 0360324, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cyclophosphamide may stop the growth of disease by blocking the growth of new blood vessels necessary for tumor growth. Giving PD 0360324 and cyclophosphamide may work better in treating patients with high-grade epithelial ovarian, primary peritoneal, or fallopian tube cancer.
The purpose of this study is to look at how patients respond to treatment with guadecitabine and pembrolizumab. The researchers will also be looking at the amount of time it takes for cancer to get worse when participants take the study drugs. All participants will be treated with guadecitabine and pembrolizumab. Guadecitabine interferes with the cancer cells' DNA and can increase the production of certain proteins, making cancer cells more recognizable by the immune system. Pembrolizumab helps your immune system to kill cancer cells. Thus the combination of guadecitabine and pembrolizumab may increase the ability of the immune system to eliminate cancer cells. Researchers want to find out whether the combination of guadecitabine and pembrolizumab is effective in treating ovarian cancer that has not responded to traditional chemotherapy. Participants will keep receiving treatment until their cancer gets worse, they have side effects, or they decide they don't want to receive the treatment anymore. After stopping treatment, the study doctor will watch participants for side effects and follow their condition every 6-12 weeks. The study aims to keep track of participants' medical conditions for the rest of their lives. This helps us look at the long-term effects of the study drugs.
This is a Phase 3, open label, randomized study designed to compare the safety and efficacy of mirvetuximab soravtansine to that of selected single-agent chemotherapy (Investigator's choice) in women with platinum-resistant FR-alpha positive advanced EOC, primary peritoneal cancer and/or fallopian tube cancer.
This phase I trial studies the side effects and best dose of gemcitabine hydrochloride and berzosertib when given together with carboplatin in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back (recurrent) and has spread to other places in the body (metastatic). Chemotherapy drugs, such as carboplatin and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Berzosertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving berzosertib with chemotherapy (carboplatin and gemcitabine hydrochloride) may work better in treating patients with ovarian, primary peritoneal, or fallopian tube cancer compared to chemotherapy alone.
This randomized phase II trial studies how well ATR kinase inhibitor M6620 (M6620) and gemcitabine hydrochloride work compared to standard treatment with gemcitabine hydrochloride alone in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back after a period of improvement (recurrent). ATR kinase inhibitor M6620 may stop the growth of tumor cells by blocking an enzyme needed for cell growth, and may also help gemcitabine hydrochloride work better. Gemcitabine hydrochloride is a drug used in chemotherapy that works to stop the growth of tumor cells by blocking cells from growing and repairing themselves, causing them to die. It is not yet known whether adding ATR kinase inhibitor M6620 to standard treatment with gemcitabine hydrochloride is more effective than gemcitabine hydrochloride alone in treating patients with ovarian, primary peritoneal, or fallopian tube cancer.
This randomized phase II trial studies the effects of acetylcysteine and topotecan hydrochloride on the tumor microenvironment, or cells that make up a tumor, compared to topotecan hydrochloride alone in patients with ovarian, fallopian tube, or primary peritoneal cancer that has not responded to treatment (persistent) or has returned after a period of improvement (recurrent) and is high grade (likely to grow and spread quickly). Research has shown that cancer cells may be able to convert nearby normal cells into cancer cells. Acetylcysteine may stop this from happening. Topotecan hydrochloride is a chemotherapy drug used to treat ovarian cancer, and may help acetylcysteine work better. This trial studies the effect of acetylcysteine and topotecan hydrochloride on the tumor microenvironment to see if they can help make it more difficult for tumor cells to grow.
This pilot clinical trial studies how well photoacoustic imaging works in detecting ovarian or fallopian tube cancer. Photoacoustic imaging is an imaging method that uses lasers to light up tissue, and then converts the light information into ultrasound images. Photoacoustic imaging can provide images of the structure of tissues, as well as their function and the levels of molecules, such as the flow of blood in blood vessels and the level of oxygen in the blood. Photoacoustic imaging may help doctors determine whether a mass is benign (non-cancerous) or cancerous based on the molecular differences between cancer and normal tissue. It may be more accurate and less expensive than other imaging methods, and does not expose patients to radiation.
This randomized phase II trial studies how well nivolumab works with or without ipilimumab in treating patients with epithelial ovarian, primary peritoneal, or fallopian tube cancer that has not responded after prior treatment (persistent) or has come back (recurrent). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase II trial studies how well Avatar-directed chemotherapy works in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that does not respond to platinum anti-cancer drugs. Drugs used in chemotherapy, such as paclitaxel, gemcitabine hydrochloride, pegylated liposomal doxorubicin hydrochloride, topotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, may interfere with the ability of tumor cells to grow and spread. Using an Avatar, a living tumor sample with similar genetic characteristics to the original tumor, may help determine which chemotherapy is most effective.
This randomized phase II clinical trial studies how well gemcitabine hydrochloride and WEE1 inhibitor MK-1775 work compared to gemcitabine hydrochloride alone in treating patients with ovarian, primary peritoneal, or fallopian tube cancer that has come back after a period of time. Gemcitabine hydrochloride may prevent tumor cells from multiplying by damaging their deoxyribonucleic acid (DNA, molecules that contain instructions for the proper development and functioning of cells), which in turn stops the tumor from growing. The protein WEE1 may help to repair the damaged tumor cells, so the tumor continues to grow. WEE1 inhibitor MK-1775 may block the WEE1 protein activity and may increase the effectiveness of gemcitabine hydrochloride by preventing the WEE1 protein from repairing damaged tumor cells without causing harm to normal cells. It is not yet known whether gemcitabine hydrochloride with or without WEE1 inhibitor MK-1775 may be an effective treatment for recurrent ovarian, primary peritoneal, or fallopian tube cancer.
This phase I/II trial studies the side effects and best dose of oncolytic measles virus encoding thyroidal sodium iodide symporter (MV-NIS) infected mesenchymal stem cells and to see how well it works in treating patients with ovarian, primary peritoneal or fallopian tube cancer that has come back. Mesenchymal stem cells may be able to carry tumor-killing substances directly to ovarian, primary peritoneal and fallopian tube cancer cells.
This is a Phase II study. The purpose of this study is to find out what effects, good and/or bad enzalutamide has on the patient and the cancer. All patients who enter the study will be closely monitored for side-effects. If multiple patients develop significant side effects from enzalutamide, the study may be stopped early. Enzalutamide is an androgen-receptor inhibitor, which means that it blocks the activity of the hormone testosterone. In ovarian, fallopian tube, and primary peritoneal cancers that express the androgen receptor, blocking the androgen-receptor may possibly slow or stop tumor growth. Enzalutamide has been studied in women with breast cancer, but this is the first study using enzalutamide for the treatment of patients with ovarian, primary peritoneal, or fallopian tube cancer.
This phase I clinical trial studies the side effects of vaccine therapy and cyclophosphamide in treating patients with stage II-III breast cancer or stage II-IV ovarian, primary peritoneal or fallopian tube cancer. Vaccines made from peptides may help the body build an effective immune response to kill tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving vaccine therapy and cyclophosphamide may kill more tumor cells.
This early phase I trial studies giving propranolol hydrochloride with standard chemotherapy in treating patients with ovarian, primary peritoneal, or fallopian tube cancer. Biological therapies, such as propranolol hydrochloride, blocks certain chemicals that affect the heart and this may stimulate the immune system and allow the chemotherapy to kill more tumor cells.
This phase I trial studies the side effects and the best dose of giving EGEN-001 together with pegylated liposomal doxorubicin hydrochloride in treating patients with ovarian epithelial, fallopian tube, or primary peritoneal cancer that has returned after a period of improvement or has not responded to treatment. Biological therapies, such as EGEN-001, may stimulate the immune system in different ways and stop tumor cells from growing. Drugs used in chemotherapy, such as pegylated liposomal doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving EGEN-001 together with pegylated liposomal doxorubicin hydrochloride may kill more tumor cells.
This phase I trial studies the side effects and the best dose of veliparib when given together with pegylated liposomal doxorubicin hydrochloride, carboplatin, and bevacizumab in treating patients with ovarian cancer, primary peritoneal cancer, or fallopian tube cancer that has returned after previous treatment. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as pegylated liposomal doxorubicin hydrochloride and carboplatin, may stop the growth of tumor cells by, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as bevacizumab, can block tumor growth by blocking the ability of tumor cells to grow and spread. Bevacizumab may also stop the growth of tumors by blocking the growth of new blood vessels necessary for tumor growth. Giving veliparib together with pegylated liposomal doxorubicin hydrochloride, carboplatin, and bevacizumab may kill more tumor cells.
This clinical trial studies the quality of life and care needs of patients with persistent or recurrent ovarian cancer, fallopian tube cancer, or peritoneal cancer. Studying quality of life in patients with cancer may help determine the effects of gynecologic cancer and may help improve the quality of life for future cancer survivors.
This phase II trial is studying the side effects and how well RO4929097 works in treating patients with recurrent and/or metastatic epithelial ovarian cancer, fallopian tube cancer, or primary peritoneal cancer. RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase III clinical trial studies two different dose schedules of paclitaxel to see how well they work in combination with carboplatin with or without bevacizumab in treating patients with stage II, III or IV ovarian epithelial cancer, primary peritoneal cancer, or fallopian tube cancer. Drugs used in chemotherapy, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bevacizumab is a type of drug called a monoclonal antibody and blocks tumor growth by stopping the growth of blood vessels that tumors need to grow. It is not yet known whether giving paclitaxel with combination chemotherapy once every three weeks is more effective than giving paclitaxel once a week in treating patients with ovarian, primary peritoneal, or fallopian tube cancer.
This phase I trial studies the side effects and the best dose of veliparib when given together with pegylated liposomal doxorubicin hydrochloride in treating patients with ovarian cancer, fallopian tube cancer, or primary peritoneal cancer that has come back after a period of improvement, or breast cancer that has spread to other parts of the body. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as liposomal doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving veliparib together with liposomal doxorubicin hydrochloride may kill more tumor cells.