Treatment Trials

24 Clinical Trials for Various Conditions

Focus your search

RECRUITING
MRgFUS Pallidotomy for the Treatment of Task Specific Focal Hand Dystonia (TSFD)
Description

The purpose of this study is to assess the safety and effectiveness of MRI-guided focused ultrasound (MRgFUS) for treating task specific focal hand dystonias (TSFD). TSFD is a type of dystonia that affects hand movements during specific tasks such as writing, playing instruments or typing, often causing involuntarily movements or cramping.

RECRUITING
Accelerated TMS for Focal Hand Dystonia
Description

This study aims to investigate the impact of accelerated transcranial magnetic stimulation (TMS) on brain function and behavior in patients with focal hand dystonia. Previous research demonstrated that individualized TMS improved dystonic behavior after one session. Building on this, the current study administers four TMS sessions in a day, with assessments conducted in four weeks, twelve weeks, and 20 weeks after each session. The research involves 8 in-person and 6 virtual visits focused on functional MRI brain scans and writing behavior analysis. The potential risk of seizures from TMS is mitigated through careful screening, adhering to safety guidelines. The study's main benefit is enhancing dystonic behavior and deepening the understanding of brain changes caused by TMS in focal hand dystonia, paving the way for further advancements in clinical therapy for this condition.

COMPLETED
Pathophysiology of Focal Hand Dystonia
Description

Background: Little is known about the problems in brain function in focal hand dystonia (FHD) or complex regional pain syndrome (CRPS) dystonia. It is unclear why some CRPS patients develop dystonia but others do not. Researchers want to learn which area of the brain is involved in CRPS dystonia compared with FHD. Objectives: To understand why people with CRPS develop dystonia, and if these reasons are different in people with FHD. Eligibility: Adults ages 18 - 70 with CRPS dystonia OR with CRPS without dystonia OR with FHD and Healthy volunteers of similar age. Design: Participants will be screened with physical exam, neurological exam, and medical history. They may give a urine sample and will answer questions. Participants can have 4 - 5 outpatient visits or stay at the clinical center for approximately 5-6 days. Participants will have MRI scans. They will lie on a table that slides in and out of a scanner that takes pictures of their brain. They will do small tasks or be asked to imagine things during the scanning. Participants will have transcranial magnetic stimulation (TMS) sessions for a few hours, with breaks. A brief electrical current passing through a well insulated wire coil on the scalp creates a magnetic pulse. This affects brain activity. Participants may do small tasks during TMS. Participants will have the electrical activity of their muscles measured during TMS sessions. Small sticky pads will be attached to their hands and arms. Participants ability to feel 2 separate stimuli as different will be tested by using a weak electrical shock to their fingers. They will also be asked to feel small plastic domes with ridges, that may cause discomfort.

Conditions
ACTIVE_NOT_RECRUITING
Deep Brain Stimulation Surgery for Focal Hand Dystonia
Description

Researchers want to test a procedure called deep brain simulation (DBS) to treat focal hand dystonia (FHD). A device called a neurostimulator is placed in the chest. It is attached to wires placed in brain areas that affect movement. Stimulating these areas can help block nerve signals that cause abnormal movements. Objectives: To test DBS as treatment for FHD. To learn about brain and nerve cell function in people with dystonia. Eligibility: People ages 18 and older with severe FHD who have tried botulinum toxin treatment at least twice Design: Participation lasts 5 years. Participants will be screened with: Medical history Physical exam Videotape of their dystonia Blood, urine, and heart tests Brain MRI scan Chest X-ray Neuropsychological tests: answering questions, doing simple actions, and taking memory and thinking tests. Hand movement tests Participants will have surgery: A frame fixes their head to the operating table. A small hole is made in the skull. Wires are inserted to record brain activity and stimulate the brain while they do simple tasks. The wires are removed and the DBS electrode is inserted into the hole. The neurostimulator is placed under the skin of the chest, with wires running to the electrode in the brain. They will have CT and MRI scans during surgery. Participants will recover in the hospital for about 1 week. The neurostimulator will be turned on 1 4 weeks after discharge. Participants will have regular visits until the study ends. Visits include: Checking symptoms and side effects MRI Movement, thinking, and memory tests If the neurostimulator s battery runs out, participants will have surgery to replace it.

TERMINATED
Depotentiation in People With Focal Hand Dystonia
Description

Background: - Focal hand dystonia (FHD) causes muscles to contract, leading to abnormal movements or postures. Musicians, writers, and athletes often get it. Researchers want to study how patients with this condition learn, a process of the brain that depends on a property called plasticity. Objective: - To study brain plasticity in people with FHD. Eligibility: * Right-handed adults 18 years and older with FHD. * Healthy, right-handed adult volunteers. Design: * Participants will be screened with medical history, physical exam, pregnancy test, and questionnaire about their right-handedness. * Participants will have 2 study visits on 2 different days. * Participants will sit in a chair and have up to 30 Transcranial Magnetic Stimulation (TMS) pulses on the left side of the head. A brief electrical current passes through a wire coil on the scalp. They will hear a click and may feel a pulling on the skin or muscle twitches. They may have to keep their eyes open and remain alert, tense certain muscles, or perform simple finger movements. * Forty more pulses, with 10 seconds between, will be given on the left side of the head. Some will be small, some big. * Researchers will measure muscle response through small electrodes taped to the right hand. * A cloth cap will be put on the participant s head. Researchers will write on tape on the cap. * Participants will have the r-PAS. An electrical stimulator will be placed on the nerve at the right wrist. Repeated magnetic pulses will be delivered in trains or short bursts together with electrical stimulation of nerve. Participants will receive up to 840 pulses. * Participants will be contacted after a few days for a follow-up check.

COMPLETED
Repetitive Transcranial Magnetic Stimulation for the Treatment of Focal Hand Dystonia
Description

This study investigated the short term effects of repeated administrations of repetitive-transcranial magnetic stimulation (rTMS) on clinical changes and investigate neurophysiologic responses to rTMS of the activated motor system in patients with FHD.

TERMINATED
Transcranial Magnetic Stimulation for Focal Hand Dystonia
Description

Background: * The brain has natural electrical rhythms of brain activities. These rhythms may be different in people with movement disorders, such as dystonia (involuntary muscle movement, cramps, or tremors). Understanding these rhythms may provide more information about movement disorders. * Focal hand dystonia, also known as "writer's cramp" or "musician's cramp," is a painful condition that affects the hand and arm muscles. Researchers want to use transcranial magnetic stimulation (TMS) to study brain rhythms in people with and without focal hand dystonia. Objectives: - To better understand brain rhythms involved in focal hand dystonia. Eligibility: * Individuals between 18 and 70 years of age who are right-handed and have focal hand dystonia. * Healthy right-handed volunteers between 18 and 60 years of age. Design: * Participants will be screened with a physical exam and medical history. * This study includes two tests: a pilot test and a main test. The pilot test will determine the frequency of TMS that will be used in the main test. Participants may be in one or both tests. Each test requires a single outpatient visit that will last up to 5 hours. * Participants will have a base test to see how their muscles respond to TMS. This will look at the electrical activity of the muscles. Participants will have a wire coil held on their scalp. A brief electrical current will pass through the coil. It creates a magnetic pulse that stimulates the brain. Researchers will test the TMS on the right and left sides of the head. This will help find the spot that activates the finger muscles, and see how much TMS is needed. * In the main test, participants will have repetitive TMS (rTMS). rTMS involves repeated magnetic pulses delivered in short bursts. There will be four pulses in each burst. Participants will have multiple bursts during the test. This test will look at how the muscles of the hand and fingers respond to brain stimulation. * Treatment for focal hand dystonia will not be provided as part of this study.

Conditions
COMPLETED
rTMS and Retraining in Focal Hand Dystonia
Description

This study is exploring a new experimental procedure in dystonia called repetitive transcranial magnetic brain stimulation (TMS) combined with rehabilitation. The purpose of the study is to determine whether repetitive TMS is effective as a treatment to reduce symptoms in dystonia as demonstrated by improved motor performance.

Conditions
COMPLETED
Muscle Contraction in Patients With Focal Hand Dystonia
Description

This study will examine and compare brain activity in people with focal hand dystonia (FHD) and healthy volunteers to obtain further knowledge about the underlying cause of FHD. Patients with dystonia have muscle spasms that cause abnormal postures while trying to perform a movement; FHD affects the hands and fine finger movements. During fine finger movement, the brain controls muscles in a process called surround inhibition. This process may be impaired in people with hand dystonia, leading to uncontrolled overactivity in muscles and impairing motor function. Healthy volunteers and patients with FHD over 18 years of age may be eligible for this study. Candidates are screened with a physical and neurological examination. In a series of three experiments conducted during a single clinic visit, participants undergo transcranial magnetic stimulation (TMS) while performing a finger movement. A wire coil is placed on the subject's scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that travels through the scalp and skull and causes small electrical currents in the outer part of the brain. The stimulation may cause muscle, hand or arm twitching, or may affect movement or reflexes. During the stimulation, the subject is asked to contract one finger. In addition to TMS, subjects have surface electromyography. For this test, they sit in a chair with their hands placed on a pillow on their lap. The electrical activity of three muscles in the right hand is recorded by electrodes (small metal disks) taped to the skin over the muscles.

COMPLETED
Long-Term Motor Learning in Focal Hand Dystonia
Description

This study will examine the effects of long-term practice of repeated finger movements in people with focal hand dystonia, as compared with healthy volunteers. Patients with dystonia have muscle spasms that cause abnormal postures while trying to perform a movement. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. Right-handed healthy volunteers and patients with focal hand dystonia of the right hand 18 years of age and older may be eligible for this study. Candidates are screened with a medical history and neurological and physical examination. Participants are trained daily for 11 days (excluding weekends) at the NIH and are asked to continue with daily 15 minutes of practice over a 12-week period to perform sequential finger movement task (key presses) with their left hand. They practice initially at NIH and then at home. At each clinic visit, their learning of the motor skill is assessed by recording their performance of 20 consecutive trials of the eight sequences (a total of 160 key presses) in the task. To evaluate long-term motor learning of the sequential movements, participants are asked to do different task tests at Day 2, Week 4 and Week 12. Brain wave activity, and brain excitability are also measured during these days. In one task, they see a random series of letters on a screen during the sequential finger movements and are asked to say the number of times they see a specific letter. In another task, they are asked to focus on each specific movement while performing the sequential finger movements. During each visit, they are questioned and evaluated for the development of any abnormal movements that may be suggestive of early dystonia. All participants have an electroencephalogram (EEG) and transcranial magnetic stimulation (TMS) at Day 1, and Day 2 and at Week 4 and Week 12 to evaluate brain activity. For the EEG, electrodes are placed on the subject's scalp and the electrical activity of the brain is recorded while the subject performs the sequence of finger movements. For TMS, a wire coil is held on the subject's scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. The effect of TMS on the muscles is detected with small electrodes taped to the skin of the subject's arms or legs. ...

COMPLETED
fMRI Studies of Task Specificity in Focal Hand Dystonia
Description

This study will examine how the brain makes involuntary spasms and contractions in patients with focal hand dystonia (FHD). Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In FHD, only the hand is involved. The study will use functional magnetic resonance imaging (fMRI, see below) to study which areas of the brain are primarily affected in FHD and better understand how brain changes produce dystonia symptoms. Normal right-handed volunteers and patients with FHD who are 18-65 years of age may be eligible for this study. Candidates are screened with a medical history and physical and neurological examinations. Women who can become pregnant have a urine pregnancy test. All participants undergo fMRI. This test uses a strong magnetic field and radio waves to obtain images of body organs and tissues. The subject lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient is asked to lie still for 10-15 minutes at a time. During the procedure, subjects are asked to perform some tasks, including writing, tapping with their hand, and drawing in a zigzag motion. Each task is performed using the right hand, left hand and right foot.

Conditions
COMPLETED
Neurophysiology of Task-Specificity of Focal Hand Dystonia
Description

This study will examine how the brain coordinates movement in patients with focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. This study will use transcranial magnetic stimulation (TMS, see below) to study how the brain plans movement. Healthy volunteers and patients with focal hand dystonia 18 years of age and older may be eligible for this study. Healthy subjects may participate in one, two or three of the experiments described below. Patients with dystonia may participate in experiments one and three. Before each experiment, each subject is asked about his/her medical and neurologic history, complete questionnaires and will undergo a brief physical examination. Experiment 1 * Surface EMG: Small electrodes are taped to the skin over the arm to measure the electrical activity of muscles. * TMS: A wire coil is held on the subject's scalp. A brief electrical current is passed through the coil, creating a magnetic pulse that stimulates the brain. During the stimulation, the subject may be asked to tense certain muscles slightly or perform other simple actions. The stimulation may cause a twitch in muscles of the face, arm, or leg, and the subject may hear a click and feel a pulling sensation on the skin under the coil. Experiment 2 (Two visits.) * Visit 1: Magnetic resonance imaging (MRI): This test uses a magnetic field and radio waves to obtain images of body tissues and organs. The patient lies on a table that is moved into the scanner (a metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 90 minutes, during which time the patient will be asked to lie still for up to 30 minutes at a time. * Visit 2: Surface EMG and TMS Experiment 3 -Surface EMG and TMS - During the TMS, subjects are asked to respond to shapes on a computer screen by pushing a button or pressing a foot petal.

Conditions
COMPLETED
Brain Changes in Patients With Focal Hand Dystonia
Description

This study will examine how chemical changes in the brain produce symptoms of hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. The study will use positron emission tomography (PET) to find our which areas of the brain in patients with focal hand dystonia differ from healthy volunteers without focal hand dystonia. Healthy volunteers and patients with focal hand dystonia between 18 and 65 years of age may be eligible for this study. Candidates are screened with a medical history and physical and neurological examinations. Participants undergo the following procedures: * PET scanning: The PET scanner is shaped like a doughnut. The subject lies on a bed that can slide in and out of the scanner. A custom-molded plastic mask is placed on the face and head to support the head and prevent it from moving during scanning. Two radioactive substances - five doses (one per scan) of \[15 O\] water and one dose of \[11C\] flumazil are injected into the body through a vein. The dose of injected radioactive substance is very small, and they are not harmful to the body. The \[15 O\] water doses are injected during the first hour and scans are taken every 10 minutes. The \[11C\] flumazil is injected during the second hour. The radioactive substances are detected by the PET scanner and provide information on the functioning of the brain chemistry. * MRI scanning: MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that is moved into the scanner (a narrow cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. Scanning time for this study will be less than one hour. Subjects may be asked to lie still for up to 10 minutes at a time.

Conditions
COMPLETED
Transcranial Electrical Polarization to Treat Focal Hand Dystonia
Description

This study will evaluate the effect of transcranial electrical polarization (TEP), also called direct current (DC) stimulation, on focal hand dystonia in people with writer's cramp. In dystonia, muscle spasms cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one part of the body, such as the hand, neck or face. When people with focal hand dystonia make small and repeated movements with their hands, there is extra activity in the part of the brain called the motor cortex. TEP is a method of brain stimulation that slows down the activity of the nerve cells in the motor cortex. This study may help researchers develop new ways to treat focal hand dystonia. People 18 years of age and older with focal hand dystonia may be eligible for this study. Participants have a neurological examination and are randomly assigned to one of two treatment groups: TEP or placebo stimulation. The TEP group receives stimulation to the parts of the brain used for hand movement, and the placebo group receives sham stimulation, which does not affect any area of the brain. There are three TEP/placebo sessions over a period of 7 to 10 days. The first session may last up to 2-1/2 hours; the other two sessions last 1-2 hours. For TEP, sponge electrodes are placed on the scalp and an electrical current is passed through the scalp and skull to the outer part of brain. Before and after each session, participants have a neurological examination, including an evaluation of the rate and severity of their movement problems. For this assessment, participants do a writing test while the electrical activity of their hand muscles is recorded using surface electromyography (EMG). For EMG, small metal disks (electrodes) filled with a conductive gel are taped to the skin over the muscles being tested. Patients are followed in the clinic the day after the end of TEP treatment for evaluation of their movement abilities and the effects of therapy, such as improvement of handwriting.

COMPLETED
Neuromodulation Therapy for Task-Specific Dystonia
Description

This study aims to apply a non-invasive brain stimulation technology called repetitive Transcranial Magnetic Stimulation (rTMS) in patients with focal hand dystonia (FHD). The goal of the study is to identify which cortical target (premotor cortex (PMC) or primary somatosensory cortex (PSC)) will show benefit after active rTMS compared to sham rTMS. A secondary goal of the study is to understand if 10 Hz rTMS can show behavioral benefit compared to sham rTMS. The study will evaluate rTMS response using measures if writing on a sensor tablet, examiner and patient dystonia rating scales and brain imaging scan (functional MRI) to understand brain changes after rTMS. Safety measures include adherence to TMS guidelines and thorough medical screening to prevent seizures.

COMPLETED
Brain Networks in Dystonia
Description

Task-specific focal dystonias are characterized by selective activation of dystonic movements during performance of highly learned motor tasks, such as writing or playing a musical instrument. To date, there is only limited knowledge about the distinct neural abnormalities that lead to the development of task-specificity in focal dystonias, which affect similar muscle groups but result in different clinical manifestations, such as writer's cramp vs. pianist's dystonia or spasmodic dysphonia vs. singer's dystonia. Our goal is to dissect the pathophysiological mechanisms underlying the phenomenon of task specificity in isolated focal dystonias using multi-level brain network analysis in conjunction with neuropathological examination of postmortem brain tissue from patients with dystonia. Rather than viewing these disorders as interesting curiosities, understanding the biology of task-specific activation of motor programs is central to understanding dystonia.

COMPLETED
Validating a New Writer s Cramp Scale
Description

Background: - People with writer s cramp develop tightness in arm muscles and abnormal hand posture when writing, which makes writing difficult or impossible. At present, there is no suitable rating scale to measure the symptoms of or disability associated with writer s cramp. Researchers want to videotape people performing simple writing tasks. They will then compare the performance of people with writer s cramp on these tasks to those of people without writer s cramp. This information will help develop a rating scale to evaluate writer s cramp. Objectives: - To develop a new rating scale for writer s cramp. Eligibility: - Individuals at least 18 years of age who have writer s cramp. Design: * Participants will be screened with a physical exam and medical history. * Participants will have one outpatient study visit that will last about 3 hours. * Participants will perform tasks related to writing, such as writing passages and drawing spirals and loops. They will be videotaped during these tasks. They will repeat some of the writing tasks three more times; on paper attached to a writing tablet, directly on the writing tablet, and on a computer tablet. * The angles made by the joints will be measured at rest not while writing healthy volunteers.

Conditions
COMPLETED
Association Between Focal Dystonia and Complex Regional Pain Syndrome
Description

This study will investigate differences among people with focal dystonia (FD), complex regional pain syndrome (CRPS) and people who have both conditions to learn more about the cause of both disorders. Participants undergo the following procedures in five visits: * Electroencephalography (EEG). Electrodes (metal discs) are placed on the scalp with an electrode cap, a paste or a glue-like substance. The spaces between the electrodes and the scalp are filled with a gel that conducts electrical activity. Brain waves are recorded while the subject lies quietly and sensory stimulation is applied to the thumb or finger. * Magnetic resonance imaging (MRI). This test uses a magnetic field and radio waves to obtain images of body tissues and organs. The patient lies on a table that can slide in and out of the scanner, wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning process. The procedure lasts about 45 minutes, during which time the patient will be asked to lie still for up to 15 minutes at a time. * Transcranial magnetic stimulation (TMS). An insulated wire coil is placed on the scalp and a brief electrical current is passed through the coil. The current induces a magnetic field that stimulates the brain. There may be a pulling sensation on the skin under the coil and a twitch in muscles of the face, arm or leg. During the stimulation, subjects may be asked to keep their hands relaxed or to contract certain muscles. * Peripheral electrical stimulation. In two experiments, TMS is combined with peripheral electrical stimulation, similar to what is used in nerve conduction studies, to the median nerve at the wrist. There may be muscle twitching. * Surface electromyography. For TMS tests and peripheral electrical stimulation, electrodes are filled with a conductive gel and taped to the skin to record the electrical activity of three muscles on the right hand. * Needle EMG. A needle is inserted into a muscle to record the electrical activity. * Nerve conduction studies. A probe is placed on the skin to deliver a small electrical stimulus, and wires are taped to the skin record the nerve impulses. These studies measure the speed with which nerves conduct electrical impulses and the strength of the connection between the nerve and the muscles. * Skin biopsy. Two sites are biopsied. A local anesthetic is given to numb the area and a 1/4-inch piece of skin is removed with a special tool. * JVP domes. Subjects are tested for their ability to discriminate sensory stimuli in the affected region and on the other side of it. They are asked to discriminate between stamps with grooves of different widths that are applied to the hands or feet.

COMPLETED
Movement-Related Brain Networks Involved in Hand Dystonia
Description

This study will use various methods to measure the activity of the motor cortex (the part of the brain that controls movements) in order to learn more about focal hand dystonia. Patients with dystonia have muscle spasms that cause uncontrolled twisting and repetitive movement or abnormal postures. In focal dystonia, just one part of the body, such as the hand, neck or face, is involved. Patients with focal hand dystonia and healthy normal volunteers between 18 and 65 years of age may be eligible for this study. Each candidate is screened with a medical history, physical examination and questionnaire. Participants undergo the following procedures: Finger Movement Tasks Subjects perform two finger movement tasks. In the first part of the study, they move their index finger repetitively from side to side at 10-second intervals for a total of 200 movements in four blocks of 50 at a time. In the second part of the study, subjects touch their thumb to the other four fingers in sequence from 1, 2, 3 and 4, while a metronome beats 2 times per second to help time the movements. This sequence is repeated for a total of 200 movements in four blocks of 50 at a time. Electroencephalography This test records brain waves. Electrodes (metal discs) are placed on the scalp with an electrode cap, a paste or a glue-like substance. The spaces between the electrodes and the scalp are filled with a gel that conducts electrical activity. Brain waves are recorded while the subject performs a finger movement task, as described above. Magnetoencephalography MEG records magnetic field changes produced by brain activity. During the test, the subjects are seated in the MEG recording room and a cone containing magnetic field detectors is lowered onto their head. The recording may be made while the subject performs a finger task. Electromyography Electromyography (EMG) measures the electrical activity of muscles. This study uses surface EMG, in which small metal disks filled with a conductive gel are taped to the skin on the finger. Magnetic resonance imaging MRI uses a magnetic field and radio waves to produce images of body tissues and organs. The patient lies on a table that can slide in and out of the scanner (a narrow metal cylinder), wearing earplugs to muffle loud knocking and thumping sounds that occur during the scanning. Most scans last between 45 and 90 minutes. Subjects may be asked to lie still for up to 30 minutes at a time, and can communicate with the MRI staff at all times during the procedure. Questionnaire This questionnaire is designed to detect any sources of discomfort the subject may have experienced during the study.

TERMINATED
Brain Anatomy in Dystonia
Description

This study will use high-resolution magnetic resonance imaging (MRI) to look for subtle differences in brain anatomy between patients with focal hand dystonia (also called writer s cramp) and healthy normal volunteers. Patients with hand dystonia have prolonged muscle contractions that cause sustained twisting movements and abnormal postures. These abnormal movements often occur with activities such as writing, typing, playing certain musical instruments such as guitar or piano, or playing golf or darts. Patients with focal hand dystonia and healthy volunteers will be enrolled in this study. Patients will be recruited from NINDS s database of patients with focal hand dystonia. Volunteers will be selected to match the patients in age, sex and handedness. This study involves two visits to the NIH Clinical Center. The first visit is a screening visit, in which patients and volunteers will have a medical history, physical examination, neurological examination, and assessment of handedness. Women of childbearing age will be screened with a pregnancy test. Pregnant women are exclude from this study. Those who join the study will return for a second visit for magnetic resonance imaging. MRI uses a magnetic field and radio waves to produce images of the brain. For the procedure, the participant lies still on a stretcher that is moved into the scanner (a narrow cylinder containing the magnet). Earplugs are worn to muffle loud noises caused by electrical switching of radio frequency circuits used in the scanning process. The scan will last about 45 to 60 minutes, at most. Some volunteers may be asked to return for a third visit to obtain a second MRI on a different scanner.

Conditions
COMPLETED
EEG and EMG Studies of Hand Dystonia
Description

This study will examine how the brain operates during execution and control of voluntary movement and what goes wrong with these processes in disease. It will use electroencephalography (EEG) and electromyography (EMG) to compare brain function in normal subjects and in patients with focal hand dystonia. In dystonia, involuntary muscle movements, or spasms, cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one region of the body, such as the hand, neck or face. EEG measures the electrical activity of the brain. The activity is recorded using wire electrodes attached to the scalp or mounted on a Lycra cap placed on the head. EMG measures electrical activity from muscles. It uses wire electrodes placed on the skin over the muscles. Adult healthy normal volunteers and patients with focal hand dystonia may be eligible for this study. Patients will be selected from NINDS's dystonia patient database. Participants will sit in a semi-reclining chair in a darkened room and be asked to move either their right index finger, right foot, or the angle of their mouth on the right side at a rate of one movement every 10 seconds. Brain and muscle activity will be measured during this task with EEG and EMG recordings.

Conditions
COMPLETED
Motor Training to Treat Hand Dystonia
Description

This study will evaluate the effect of motor training on focal hand dystonia in people with writer's cramp and will examine whether this training affects excitability of the motor cortex of the brain. In dystonia, muscle spasms cause uncontrolled twisting and repetitive movement or abnormal postures. Focal dystonia involves just one part of the body, such as the hand, neck or face. Patients with focal hand dystonia have difficulty with individualized finger movements, which may be due to increased excitability of the motor cortex. Patients with hand dystonia 21 years of age or older may be eligible for this 2-month study. Those taking botulinum toxin injections must stop medication 3 months before entering the study. Participants will undergo a complete neurologic examination. They will undergo motor training with "constraint-induced movement therapy." This therapy involves constraining some fingers while allowing others to move. Participants will have the following tests and procedures at baseline (before motor training), after 4 weeks of motor training, and again after 8 weeks: * Handwriting analysis - A computerized program evaluates the degree of "automatic movements" the patient uses in writing, as well as writing pressure and speed. * Symptoms evaluation - Patients fill out a written questionnaire about symptoms and rate their improvement, if any, after training. * Transcranial magnetic stimulation - The patient is seated in a comfortable chair, and an insulated wire coil is placed on the scalp. Brief electrical currents pass through the coil, creating magnetic pulses that travel to the brain. These pulses generate very small electrical currents in the brain cortex, briefly disrupting the function of the brain cells in the stimulated area. The stimulation may cause muscle twitching or tingling in the scalp, face, arm or hand. During the stimulation, the patient is asked to slightly tense certain muscles in the hand or arm or perform simple actions. Electrodes are taped to the skin over the muscles activated by the stimulation, and the electrical activity in the muscles will be recorded with a computer. * Electroencephalogram (EEG) - Wire electrodes are taped to the scalp or placed on a Lycra cap the patient wears to record the brain's electrical activity. Participants will have 50-minute motor training sessions 3 times during the first week of the study, twice the second week and once each in weeks 3 and 4. In addition, they will be required to practice the training at home for 25 minutes each day during week 1 and 50 minutes each day for the remaining 3 weeks. Fingers not being trained will be splinted.

Conditions
COMPLETED
Neurophysiologic Study of Patient With Essential Tremor and Dystonic Tremor
Description

Background: Essential tremor is when a person has tremor, but no other neurological symptoms. Dystonic tremor is when a person also has dystonia. Dystonia is a condition in which muscle contraction causes changes in posture. Researchers do not fully know what areas of the brain cause these tremors, or how the types differ. They also do not know what tests can identify the differences. Objective: To look at differences between essential tremor and dystonic tremor. Eligibility: People ages 18 and older with or without tremor Design: Participants will be screened with medical history, physical exam, and urine tests. Those with tremor will complete questionnaires about how tremor affects them. The screening and study visits can be done on the same day or on separate days. Participants will have 1 or 2 study visits. These include magnetic resonance imaging (MRI) and tremor testing. For MRI, participants will lie on a table that slides in and out of a cylinder that takes pictures. Sensors on the skin measure breathing, heart rate, and muscle activity. This takes about 2 hours. Tremor testing will include transcranial magnetic stimulation (TMS), electrical stimulation of the fingers, doing a movement task, and recording of tremor movements. For TMS, two wire coils will be held on the scalp and a brief magnetic field will be produced. A brief electrical current will pass through the coils. For the other tests, small sticky pad electrodes will be put on the skin. Participants will move their hand when they hear a sound. They will get weak electrical shocks to their fingers. These tests will take 3-4 hours. Participants can take part in either or both parts of the study.

COMPLETED
Incobotulinum Toxin A (Xeomin®) As A Treatment For Focal Task-Specific Dystonia Of The Musician's Hand
Description

The investigational drug being studied in this protocol is Incobotulinumtoxin A (Xeomin®). Botulinum toxin (BoNT) prevents the release of the acetylcholine from peripheral nerves, inhibiting muscle contractions. BoNT is effective in relaxing overactive muscles. In musician's dystonia, the ability to reduce abnormally overactive muscles in the hand can be critical for the musical professional to continue his or her career. With the use of EMG/electrical stimulation and/or ultrasound guidance, the injector can precisely localize the individual muscles that are affected in this condition with great accuracy. Prior studies have shown that BoNT injections produce beneficial effects in forearm muscles, and less effect in shoulder or proximal arm muscles. Possible risks in treating patients with BoNT include excessive weakness of the injected muscles. The drug may also affect non-targeted muscles. However these risks will be minimized during the screening period by carefully targeting the affected muscles and by administering low doses of BoNT. Small booster doses may be given at follow up visit (2, 4, 14 and 16-weeks after the primary injection date) if the initial injection was insufficient to produce sufficient efficacy in relief of the focal dystonia and did not produce excess weakness of the targeted muscle.

Conditions