568 Clinical Trials for Various Conditions
This research is being done to assess Umbralisib and Rituximab as a first line therapy for Follicular Lymphoma or Marginal Zone Lymphoma.
The purpose of this study is to find out how successful ibrutinib is at putting follicular lymphoma into full remission. In this study, remission will be determined by achieving a normal PET scan after treatment. A PET scan is an imaging test that looks for active lymphoma. People who don't have a complete remission on PET after their first treatment are at high risk for having their lymphoma return. This study will investigate if ibrutinib will help participants achieve a complete remission without giving additional chemotherapy. The study will also investigate any possible side effects of the study drug ibrutinib.
This phase II trial tests how well pirtobrutinib and mosunetuzumab work in treating patients with grade 1-3a follicular lymphoma (FL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Pirtobrutinib, a type of tyrosine kinase inhibitor, works by blocking the action of the Bruton tyrosine kinase (BTK) protein. The BTK protein signals cancer cells to multiply, and blocking it may help keep cancer cells from growing. It could also improve T cell fitness and decrease inflammation, therefore, may improve the efficacy and safety of T cell-based therapies, such as mosunetuzumab. Mosunetuzumab is a bispecific antibody that binds both T cells and the lymphoma cancer cells and harnesses T cells to interfere with the ability of cancer cells to grow and spread. Giving pirtobrutinib and mosunetuzumab together may kill more tumor cells in patients with relapsed or refractory grade 1-3a FL and potentially decreases some side effects of mosunetuzumab which are related to T cells being activated (e.g., cytokine release syndrome).
This phase II trial tests the safety, side effects and effectiveness of epcoritamab and tazemetostat in treating patients with grade I-IIIa follicular lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Epcoritamab is a bispecific monoclonal antibody that binds to two different antigens on the surface of cancer cells that may help the body's immune system attack the cancer and may interfere with the ability of the cancer cells to grow and spread. Tazemetostat, a EZH2 inhibitor, may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving epcoritamab and tazemetostat may be safe, tolerable and/or effective in treating patients with relapsed or refractory grade I-IIIa follicular lymphoma.
This phase II trial tests how well mosunetuzumab and polatuzumab vedotin works in treating patients with grade 1-3a follicular lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Mosunetuzumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Polatuzumab vedotin is a monoclonal antibody, polatuzumab, linked to a toxic agent called vedotin. Polatuzumab attaches to CD79B positive cancer cells in a targeted way and delivers vedotin to kill them. Giving mosunetuzumab and polatuzumab vedotin may kill more cancer cells in patients with relapsed or refractory grade 1-3a follicular lymphoma.
This phase II trial studies the effect of acalabrutinib and obinutuzumab in treating patients with follicular lymphoma or other indolent non-Hodgkin lymphoma for which the patient has not received treatment in the past (previously untreated). Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Giving acalabrutinib and obinutuzumab may kill more cancer cells.
This phase II trial studies how well acalabrutinib, lenalidomide, and rituximab work in treating patients with CD20 positive stage III-IV, grade 1-3a follicular lymphoma. Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving acalabrutinib, lenalidomide, and rituximab may help to control the disease.
This phase II trial studies how well obinutuzumab with or without umbralisib, lenalidomide, or combination chemotherapy work in treating patients with grade I-IIIa follicular lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with obinutuzumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Umbralisib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop cancer cells from growing. Chemotherapy drugs, such as cyclophosphamide, doxorubicin, vincristine, prednisone, and bendamustine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving obinutuzumab with or without umbralisib, lenalidomide, or combination chemotherapy will work better in treating patients with grade I-IIIa follicular lymphoma.
This phase Ib/II trial studies the side effects and best dose of toll-like receptor 9 (TLR9) agonist SD-101 when given together with ibrutinib and radiation therapy and to see how well they work in treating patients with Low Grade Follicular Lymphoma, Marginal Zone Lymphoma, or Mantle Cell Lymphoma that has come back after a period of improvement or no longer responds to treatment. Immunostimulants such as TLR9 agonist SD-101 may increase the ability of the immune system to fight infection and disease. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving TLR9 agonist SD-101 with ibrutinib and radiation therapy may induce an immune response and prolong anti-tumor response.
This phase II trial studies how well obinutuzumab and lenalidomide work in treating patients with previously untreated stage II-IV grade 1-3a follicular lymphoma. Immunotherapy with obinutuzumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving obinutuzumab and lenalidomide may work better in treating patients with previously untreated follicular lymphoma.
This phase III trial studies rituximab and yttrium Y-90 ibritumomab tiuxetan to see how well they work compared to rituximab alone in treating patients with untreated follicular lymphoma. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Radioactive substances linked to monoclonal antibodies can bind to cancer cells and give off radiation which may help kill cancer cells. It is not yet known whether rituximab works better with or without yttrium Y-90 ibritumomab tiuxetan in treating follicular lymphoma.
This phase II trial studies the side effects and how well giving pegfilgrastim together with rituximab works in treating patients with untreated, relapsed, or refractory follicular lymphoma, small lymphocytic lymphoma (SLL), or marginal zone lymphoma (MZL). Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of therapy. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer to grow and spread. Others find cancer cells and help kill them or tumor cancer-killing substances to them. Giving pegfilgrastim together with rituximab may kill more cancer cells
This randomized phase I/II trial studies radiation therapy and rituximab in treating patients with stage I-II grade 1 or grade 2 follicular lymphoma. Radiation therapy uses high energy x-rays to kill cancer cells. Immunotherapy with monoclonal antibodies, such as rituximab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving radiation therapy with rituximab may kill more cancer cells.
This phase I/II trial studies the side effects and best dose of genetically engineered lymphocyte therapy and to see how well it works after peripheral blood stem cell transplant (PBSCT) in treating patients with high-risk, intermediate-grade, B-cell non-Hodgkin lymphoma (NHL). Genetically engineered lymphocyte therapy may stimulate the immune system in different ways and stop cancer cells from growing. Giving rituximab together with chemotherapy before a PBSCT stops the growth of cancer cells by stopping them from dividing or killing them. Giving colony-stimulating factors, such as filgrastim (G-CSF), or plerixafor helps stem cells move from the bone marrow to the blood so they can be collected and stored. More chemotherapy or radiation therapy is given to prepare the bone marrow for the stem cell transplant. The stem cells are then returned to the patient to replace the blood-forming cells that were destroyed by the chemotherapy. Giving genetically engineered lymphocyte therapy after PBSCT may be an effective treatment for NHL.
This randomized phase II trial studies how well ofatumumab and bendamustine hydrochloride with or without bortezomib works in treating patients with untreated follicular non-Hodgkin lymphoma. Monoclonal antibodies, such as ofatumumab, may block cancer growth in different ways by targeting certain cells. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Bortezomib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bortezomib may also stop the growth of cancer cells by blocking blood flow to the tumor. It is not yet known whether ofatumumab and bendamustine hydrochloride are more effective with bortezomib in treating patients with follicular non-Hodgkin lymphoma.
This phase II trial studies how well lenalidomide works in combination with rituximab in treating participants with stage III-IV non-Hodgkin lymphoma that is growing slowly. Lenalidomide is designed to change the body's immune system. It may also interfere with the development of tiny blood vessels that help support tumor growth, which may prevent the growth of cancer cells. Monoclonal antibodies, such as rituximab, may interfere with the ability of cancer cells to grow and spread. Giving lenalidomide and rituximab may work better in participants with indolent non-Hodgkin lymphoma.
Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Oblimersen may help rituximab work better by making cancer cells more sensitive to the drug. This phase II trial is studying how well giving rituximab together with oblimersen works in treating patients with stage II, stage III, or stage IV follicular non-Hodgkin's lymphoma
This phase II trial studies the side effects and how well giving rituximab and dexamethasone together works in treating patients with low-grade non-Hodgkin lymphoma (NHL). Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving rituximab together with dexamethasone may kill more cancer cells
This study is designed as a Phase II/III, multi-center trial, comparing two transplant strategies to determine whether non-myeloablative allogeneic Hematopoietic Stem Cell Transplantation (HSCT) will improve long-term progression-free survival compared to autologous HSCT. Recipients will be biologically assigned to the appropriate treatment arm depending on the availability of a Human Leukocyte Antigen (HLA) matched sibling.
This phase I/II trial is studying the best dose of FR901228 when given together with rituximab and fludarabine and to see how well FR901228 works alone in treating patients with relapsed or refractory low-grade B-cell non-Hodgkin's lymphoma. Drugs used in chemotherapy, such as FR901228 and fludarabine, work in different ways to stop cancer cells from dividing so they stop growing or die. Monoclonal antibodies, such as rituximab, can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Rituximab may increase the effectiveness of chemotherapy drugs by making cancer cells more sensitive to the drugs.
Phase II trial to study the effectiveness of bortezomib in treating patients who have low-grade lymphoproliferative disorders. Bortezomib may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth.
Phase II trial to study the effectiveness of thalidomide in treating patients who have relapsed or refractory low-grade non-Hodgkin's lymphoma. Thalidomide may stop the growth of non-Hodgkin's lymphoma by stopping blood flow to the tumor
Phase II trial to study the effectiveness of combining thalidomide with interferon alfa in treating patients who have relapsed or refractory non-Hodgkin's lymphoma. Thalidomide may stop the growth of cancer by stopping blood flow to the tumor. Interferon alfa may interfere with the growth of cancer cells. Combining thalidomide with interferon alfa may kill more tumor cells
Randomized phase III trial to compare the effectiveness of two regimens of combination chemotherapy followed by rituximab or observation in treating patients who have stage III or stage IV low-grade non-Hodgkin's lymphoma. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. It is not yet known which regimen of combination chemotherapy, with or without rituximab, is more effective for non-Hodgkin's lymphoma
This phase I trial tests zanubrutinib in combination with sonrotoclax for treating underrepresented ethnic and racial minorities with B-cell non-Hodgkin lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Many racial and ethnic minorities face additional treatment challenges which may lead to poorer outcomes, however, there are fewer racial and ethnic minorities participating in clinical trials. Zanubrutinib, a type of tyrosine kinase inhibitor, blocks a protein called Bruton tyrosine kinase (BTK), which may help keep cancer cells from growing. Sonrotoclax works by blocking a protein called B-cell lymphoma-2 (Bcl-2). This protein helps certain types of blood cancer cells to survive and grow. When sonrotoclax blocks Bcl-2, it slows down or stops the growth of cancer cells and causes them to die. Zanubrutinib and sonrotoclax have been shown to be an effective treatment for B-cell cancers. Giving zanubrutinib in combination with sonrotoclax may be effective in treating ethnic and racial minorities with relapsed or refractory B-cell non-Hodgkin lymphoma.
This phase II trial tests the safety, side effects and effectiveness of mosunetuzumab in treating patients with slow growing (indolent) B-cell lymphoma. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of tumor cells to grow and spread.
This phase II trial tests the effects of mosunetuzumab with or without polatuzumab vedotin and obinutuzumab for the treatment of patients with indolent B-cell non-Hodgkin lymphoma. Mosunetuzumab and obinutuzumab are monoclonal antibodies that may interfere with the ability of cancer cells to grow and spread. Polatuzumab vedotin is a monoclonal antibody, called polatuzumab, linked to a chemotherapy drug, called vedotin. Polatuzumab is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD79b receptors, and delivers vedotin to kill them. Giving mosunetuzumab with polatuzumab vedotin and obinutuzumab may work better in treating patients with untreated indolent B-cell non-Hodgkin lymphoma.
This phase I/II trial finds out the best dose, possible benefits and/or side effects of ALX148 in combination with rituximab and lenalidomide in treating patients with indolent and aggressive B-cell non-Hodgkin lymphoma. Immunotherapy with ALX148, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Chemotherapy drugs, such as lenalidomide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Rituximab is a monoclonal antibody that binds to a protein called CD20 found on B-cells, and may kill cancer cells. Giving ALX148 in combination with rituximab and lenalidomide may help to control the disease.
This phase II trial studies the effect of polatuzumab vedotin, venetoclax, and rituximab and hyaluronidase human in treating patients with mantle cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Polatuzumab vedotin is a monoclonal antibody, polatuzumab, linked to a toxic agent called vedotin. Polatuzumab attaches to CD79B positive cancer cells in a targeted way and delivers vedotin to kill them. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cell growth. Rituximab hyaluronidase is a combination of rituximab and hyaluronidase. Rituximab binds to a molecule called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Hyaluronidase allows rituximab to be given by injection under the skin. Giving rituximab and hyaluronidase by injection under the skin is faster than giving rituximab alone by infusion into the blood. Giving polatuzumab vedotin, venetoclax, and rituximab and hyaluronidase human may work better than standard therapy in treating patients with mantle cell lymphoma.
This phase II trial studies how well obinutuzumab, ibrutinib, and venetoclax work in treating patients with previously untreated stage II-IV follicular lymphoma. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Ibrutinib and venetoclax may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving obinutuzumab, ibrutinib, and venetoclax together may work better in treating follicular lymphoma compared to each drug alone.