5 Clinical Trials for Various Conditions
PBGM01 is a gene therapy for GM1 gangliosidosis intended to deliver a functional copy of the GLB1 gene to the brain and peripheral tissues. This study will assess in a 2 part design the safety, tolerability and efficacy of PBGM01 in patients with early onset infantile (Type 1) and late onset infantile (Type 2a) GM1 gangliosidosis
Owing to the rarity, severity, speed of progression and fatal prognosis of infantile and juvenile GM1, there is a limited understanding of overall disease progression and meaningful outcome measures. This study aims to build a natural history data set through collection of a number of clinical, imaging, and laboratory assessments that may be specific predictors of GM1 disease progression and clinical outcome. Having a GM1 natural history data set can inform potential efficacy endpoints and biomarkers for future clinical trials. This natural history study will follow up to 40 subjects diagnosed with GM1 gangliosidosis (up to 20 infantile (Type 1) and 20 late infantile/juvenile (Type 2)) for up to 3 years. Visits will be conducted every 6 months, during which several procedures will be performed and the data recorded in order to learn about the natural course of the disease, including changes in clinical and neurological assessments and electrophysiologic, imaging and biofluid biomarkers. Study procedures include: physical \& neurological exam, blood \& urine sample collection, questionnaires \& assessments of development, seizure diary, ECHO, ECG, x-ray and ultrasound (if MRI not performed), EEG and genetic testing (if not already done). The following procedures are subject to local/institutional policies and the medical discretion of the Study Physician: MRI, lumbar puncture (spinal tap) and General anesthesia/sedation (for MRI and LP).
Background: GM1 gangliosidosis is a disorder that destroys nerve cells. It is fatal. There is no treatment. People with GM1 are deficient in a certain enzyme. A gene therapy may help the body make this enzyme. This could improve GM1 symptoms. Objective: To test if a gene therapy helps Type I and Type II GM1 gangliosidosis symptoms. Eligibility: Type I subjects will be male and female \>= 6 months \<= 12 months of age at the time of full ICF signing. Type II subjects will be male and female \> 12 months old and \< 12 years old at the time of full ICF signing. Design: Participants will be screened with their medical history and a phone survey. Participants will stay at NIH for 8-10 weeks. Participants will have baseline tests: Blood, urine, and heart tests Hearing tests Ultrasound of abdomen EEG: Sticky patches on the participant s head will measure brain function. Lumbar puncture: A needle will be stuck into the participant s spine to remove fluid. MRI scans, bone x-rays, and bone scans: Participants will lie in a machine that takes pictures of the body IQ tests Neurology exams Central line placement Skin biopsy: A small piece of the participant s skin will be removed. Speech tests Participants will have an x-ray while swallowing food. Participants will take drugs by mouth and IV. This will get their immune system ready for therapy. Participants will get the gene therapy by IV. They may stay at NIH for a week to watch for side effects. Participants will have visits 3 and 6 months after treatment. Then visits will be every 6 months for 2 years. Then they will have a visit at 3 years. Visits will take 4-5 days. Participants will return to NIH once a year for 2 years for tests in an extension study....
This study is being conducted to better understand the natural course of GM1 gangliosidosis, GM2 gangliosidoses and Gaucher disease Type 2 (GD2). Information is planned to be gathered on at least 180 patients with GM1 gangliosidosis, GM2 gangliosidoses, and Gaucher Disease type 2. Retrospective data collection is planned for at least 150 deceased patients (Group A). Group B is for patients alive at the time of enrollment. In Group B it is planned to prospectively collect more comprehensive data from at least 30 patients. The purpose of this study is to collect relevant information for a adequate design of a potential subsequent research program in these diseases. In this study no therapy is being offered.
ScreenPlus is a consented, multi-disorder pilot newborn screening program implemented in conjunction with the New York State Newborn Screening Program that provides families the option to have their newborn(s) screened for a panel of additional conditions. The study has three primary objectives: 1) define the analytic and clinical validity of multi-tiered screening assays for a flexible panel of disorders, 2) determine disease incidence in an ethnically diverse population, and 3) assess the impact of early diagnosis on health outcomes. Over a five-year period, ScreenPlus aims to screen 100,000 infants born in nine high birthrate, ethnically diverse pilot hospitals in New York for a flexible panel of 14 rare genetic disorders. This study will also involve an evaluation of the Ethical, Legal and Social issues pertaining to NBS for complex disorders, which will be done via online surveys that will be directed towards ScreenPlus parents who opt to participate and qualitative interviews with families of infants who are identified through ScreenPlus.