137 Clinical Trials for Various Conditions
Gastric cancer continues to have a poor prognosis primarily due to the inability to detect it in its early stages. This study will develop and validate a blood assay to facilitate the non-invasive detection of gastric cancer.
Patients with digestive tract malignancy often experience severe and unremitting abdominal pain that negatively affects physical, emotional, and social function, as well as health related quality of life (HRQOL). Therapeutic virtual reality (VR) has emerged as a promising and evidence-based treatment modality for cancer pain. Users of VR wear a pair of goggles with a close-proximity screen in front of the eyes that creates a sensation of being transported into lifelike, three-dimensional worlds. To date, VR has been limited to short-term clinical trials for cancer pain. Moreover, limited research exists on theory-based VR modalities beyond mere distraction, such as VR that employs acceptance and commitment therapy (ACT) with components of biofeedback and mindfulness. To bridge these gaps, this study seeks to: (1) assess the impact of immersive VR on patient-reported outcomes (PROs), including pain, activity metrics, and opioid use among patients with visceral pain from a digestive tract malignancy; (2) assess differences in PROs, activity metrics, and opioid use between skills-based VR therapy vs. distraction VR therapy; and (3) determine patient-level predictors of VR treatment response in visceral cancer pain. To address these aims, the study will measure PROs and opioid use in 360 patients randomized among 3 groups and follow them for 60 days after enrollment: (1) an enhanced VR group receiving skills-based VR; (2) a distraction-based VR group receiving patient-selected VR videos; and (3) a VR sham control group using a VR headset with 2-D content. The results will inform best practices for the implementation of VR for visceral cancer pain management and guide selection of patient-tailored experiences.
This phase I trial tests the safety, side effects, and best dose of azenosertib in combination with trastuzumab deruxtecan in treating patients with HER2-positive and cyclin E amplified gastric or gastroesophageal junction cancer and other HER2-positive solid tumors that have spread to nearby tissue or lymph nodes (locally advanced), that have spread from where it first started (primary site) to other places in the body (metastatic), or that cannot be removed by surgery (unresectable). Azenosertib is in a class of medications called kinase inhibitors. It inhibits a protein called Wee1. Inhibition of the Wee1 protein can make tumor cells more vulnerable to chemotherapy drugs, leading to tumor cell death. Trastuzumab deruxtecan is in a class of medications called antibody-drug conjugates. It is composed of a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug, called deruxtecan. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers deruxtecan to kill them. Giving azenosertib in combination with trastuzumab deruxtecan may be safe, tolerable, and/or more effective in treating patients with locally advanced, metastatic, or unresectable HER2-positive gastric, gastroesophageal junction, or other solid tumors, compared to just trastuzumab deruxtecan alone.
This phase II trial studies the effect of the combination of ramucirumab and trifluridine/tipiracil or paclitaxel in treating patients with previously treated gastric or gastroesophageal junction cancer that has spread to other places in the body (advanced). Ramucirumab may damage tumor cells by targeting new blood vessel formation. Trifluridine/tipiracil is a chemotherapy pill and that may damage tumor cells by damaging their deoxyribonucleic acid (DNA). Paclitaxel may block cell growth by stopping cell division which may kill tumor cells. Giving ramucirumab and trifluridine/tipiracil will not be worse than ramucirumab and paclitaxel in treating gastric or gastroesophageal junction cancer.
This phase II trial studies the how well berzosertib and irinotecan work in treating patients with gastric or gastroesophageal junction cancer that is growing, spreading or getting worse (progressive), has spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Berzosertib may stop the growth of tumor cells by blocking some of the enzymes needed for growth. Chemotherapy drugs, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving berzosertib and irinotecan may work better than irinotecan alone in treating patients with gastric and gastroesophageal junction cancer.
Phase II trial to study the effectiveness of bryostatin 1 and cisplatin in treating patients who have metastatic or unresectable stomach cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Bryostatin 1 may increase the effectiveness of cisplatin by making tumor cells more sensitive to the drug. Combining cisplatin with bryostatin 1 may kill more tumor cells.
This phase II/III trial compares the addition of nivolumab to the usual treatment of paclitaxel and ramucirumab to paclitaxel and ramucirumab alone in treating patients with gastric or esophageal adenocarcinoma that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Ramucirumab is a monoclonal antibody that may prevent the growth of new blood vessels that tumors need to grow. Paclitaxel is in a class of medications called antimicrotubule agents. It stops cancer cells from growing and dividing and may kill them. Adding nivolumab to ramucirumab and paclitaxel may work better to treat patients with advanced stomach or esophageal cancer.
This clinical trial evaluates the feasibility and acceptability of acupressure to the ear (auricular) to address appetite and weight in patients with stage II-IV gastric, esophageal, or pancreatic cancer. Cancer anorexia, the abnormal loss of appetite, directly leads to cancer-associated weight loss (cachexia) through malnourishment, reduced caloric intake, treatment side-effects, and other modifiable risk factors. Cachexia prolongs length of hospital stay for patients, negatively impacts treatment tolerance and adherence, and reduces overall patient quality of life. Auricular acupressure is a form of micro-acupuncture that exerts its effect by stimulating the central nervous system using adhesive taped pellets applied to specific locations on the external ear. The use of these pellets to deliver auricular acupressure has been shown to improve pain, fatigue, insomnia, nausea and vomiting, depression, and quality of life in both cancer and non-cancer settings. Auricular acupressure is a safe, inexpensive, and non-invasive approach to addressing cancer-related symptoms and treatment side-effects and may be effective at improving appetite and weight loss in stage II-IV gastric, esophageal, and pancreatic cancer patients.
This phase II trial compares atezolizumab in combination with chemotherapy (docetaxel, oxaliplatin, leucovorin calcium, fluorouracil, capecitabine) to atezolizumab alone for controlling the growth and/or spreading of the disease in patients with gastric or gastroesophageal junction (JEG) cancer that has not spread from where it first started (local) or only has spread to nearby lymph nodes or tissue (locoregional) and has high microsatellite instability (MSI-H) and mismatch repair deficiency (dMMR). The mismatch repair (MMR) system in the body corrects errors made during the copying of DNA and serves as a proofreading function. If this system isn't working correctly, mutations (changes) in DNA occur which can allow the cancer to grow or spread. This is called dMMR (deficient mismatch repair) . MSI-H describes cancer cells that have a high number of mutations within microsatellites. For example, microsatellite testing that shows mutations in 30% or more microsatellites is called microsatellite instability-high (MSI-H). Microsatellites are short, repeated sequences of DNA. There is evidence that MSI-H/ dMMR gastric or GEJ tumors respond well to immunotherapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Docetaxel is in a class of medications called taxanes. It stops tumor cells from growing and dividing and may kill them. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's DNA and may kill tumor cells. Capecitabine is in a class of medications called antimetabolites. It is taken up by tumor cells and breaks down into fluorouracil, a substance that kills tumor cells. Chemotherapy drugs such as leucovorin calcium and fluorouracil work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Using atezolizumab as immunotherapy with and following chemotherapy versus atezolizumab alone prior to and after surgery may shrink or stabilize the tumor in patients with MSI-H/dMMR localized gastric or GEJ cancer and may increase the length of time after treatment that cancer does not come back or get worse.
This phase III trial compares the effect of modified fluorouracil, leucovorin calcium, oxaliplatin, and irinotecan (mFOLFIRINOX) to modified fluorouracil, leucovorin calcium, and oxaliplatin (mFOLFOX) for the treatment of advanced, unresectable, or metastatic HER2 negative esophageal, gastroesophageal junction, and gastric adenocarcinoma. The usual approach for patients is treatment with FOLFOX chemotherapy. Chemotherapy drugs work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Fluorouracil stops cells from making DNA and it may kill tumor cells. Leucovorin is used with fluorouracil to enhance the effects of the drug. Oxaliplatin works by killing, stopping, or slowing the growth of tumor cells. Some patients also receive an immunotherapy drug, nivolumab, in addition to FOLFOX chemotherapy. Immunotherapy may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Irinotecan blocks certain enzymes needed for cell division and DNA repair, and it may kill tumor cells. Adding irinotecan to the FOLFOX regimen could shrink the cancer and extend the life of patients with advanced gastroesophageal cancers.
This phase I trial tests the safety, side effects studies chemotherapy followed by chemotherapy at the same time as radiation therapy (chemoradiation) before surgery (neoadjuvant) in treating patients with stage gastric (stomach) or gastroesophageal junction cancer . Chemotherapy drugs, such as docetaxel, oxaliplatin , leucovorin, fluorouracil, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving chemotherapy and chemoradiation before surgery may make the tumor smaller and may reduce the amount of normal tissue that needs to be removed.
This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.
This early phase I trial studies the effect of pembrolizumab and lenvatinib in treating patients with gastroesophageal adenocarcinoma that has spread to other places in the body (advanced/metastatic) or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Lenvatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab and lenvatinib may kill more tumor cells.
The dose escalation phase of this trial identifies the safety, side effects and best dose of ceralasertib (AZD6738) when given in combination with trastuzumab deruxtecan (DS-8201a) in treating patients with solid tumors that have a change (mutation) in the HER2 gene or protein and have spread to other places in the body (advanced). The dose expansion phase (phase Ib) of this trial compares how colorectal and gastroesophageal cancers with HER2 mutation respond to treatment with a combination of ceralasertib and trastuzumab deruxtecan versus trastuzumab deruxtecan alone. Ceralasertib may stop the growth of tumor cells and may kill them by blocking some of the enzymes needed for cell growth. Trastuzumab deruxtecan is a monoclonal antibody, called trastuzumab, linked to a chemotherapy drug, called deruxtecan. Trastuzumab attaches to HER2 positive cancer cells in a targeted way and delivers deruxtecan to kill them. Ceralasertib and trastuzumab deruxtecan may be safe, tolerable and effective in treating patients with advanced solid tumors expressing the HER2 protein or gene.
This phase II trial studies if talazoparib works in patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and has mutation(s) in deoxyribonucleic acid (DNA) damage response genes who have or have not already been treated with another PARP inhibitor. Talazoparib is an inhibitor of PARP, a protein that helps repair damaged DNA. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. All patients who take part on this study must have a gene aberration that changes how their tumors are able to repair DNA. This trial may help scientists learn whether some patients might benefit from taking different PARP inhibitors "one after the other" and learn how talazoparib works in treating patients with advanced cancer who have aberration in DNA repair genes.
This phase I trial investigates the best dose, possible benefits and/or side effects of BAY 1895344 in combination with FOLFIRI in treating patients with stomach or intestinal cancer that that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or has spread from where it first started (primary site) to other places in the body (metastatic). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan, fluorouracil, and leucovorin, (called FOLFIRI in short) work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving BAY 1895344 in combination with FOLFIRI may help shrink advanced or metastatic stomach and/or intestinal cancer.
This phase Ib trial investigates the side effects and how well a shorter course of chemotherapy and radiation treatment (chemoradiotherapy) for 2 weeks instead of 5 weeks followed by standard chemotherapy works in treating patients with gastric cancer who are scheduled to have treatment and then surgery to remove the tumor. Chemotherapy drugs, such as capecitabine and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy sources to kill tumor cells and shrink tumors. Giving short-course chemo-radiotherapy before chemotherapy and surgery may help to control the disease.
This study examines at-home monitoring of patient-generated phsyiologic health data and patient-reported outcomes. Patient-generated health data using at-home monitoring devices and smart device applications are used more and more to measure value and quality in cancer care. This trial may show whether at-home monitoring programs can improve the care of patients after hospital discharge from surgery.
This phase I trial identifies the best dose, possible benefits and/or side effects of BAY 1895344 in combination with chemotherapy in treating patients with solid tumors or urothelial cancer that has spread to other places in the body (advanced). BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Cisplatin and gemcitabine are chemotherapy drugs that stop the growth of tumor cells by killing the cells. Combining BAY 1895344 with chemotherapy treatment (cisplatin, or cisplatin and gemcitabine) may be effective for the treatment of advanced solid tumors, including urothelial cancer.
This trial tests new methods and materials for the real-time chemotherapy-associated side effects monitoring support system (RT-CAMSS) in patients with gastrointestinal cancers undergoing chemotherapy. RT-CAMSS is a monitoring support system that provides patients with evidence-based information and side-effect management and coping skills, emotional support and validation, and proactive care via text messages and questionnaires as they undergo chemotherapy.
This phase IIA trial investigates the side effects of Ad5.F35-hGCC-PADRE vaccine and to see how well it works in treating patients with gastrointestinal adenocarcinoma. Ad5.F35-hGCC-PADRE vaccine may help to train the patient's own immune system to identify and kill tumor cells and prevent it from coming back.
This phase I trial studies the best dose of sonidegib when given together with pembrolizumab and to see how well they work in treating patients with solid tumor that has spread to other places in the body (advanced). Sonidegib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving sonidegib and pembrolizumab may work better than standard treatment in treating patients with advanced solid tumors.
This phase II trial studies how well an early recovery after surgery protocol works in enhancing quality of life in participants with stage 0-IIIC gastric cancer undergoing surgery. The early recovery after surgery protocol may decrease pain and nausea, promote bowl function, decrease the number of days hospitalized, and improve a participant's ability to function normally after surgery.
This pilot phase I/II trial studies the side effects and how well nivolumab and ipilimumab in combination with chemotherapy and radiation therapy work in treating patients with gastric cancer that can be removed by surgery. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as oxaliplatin and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Intensity-modulated radiation therapy uses thin beams of radiation of different strengths aimed at the tumor from many angles. This type of radiation therapy may reduce the damage to healthy tissue near the tumor. Giving nivolumab, ipilimumab, chemotherapy and radiation therapy may work better in treating patients with gastric cancer.
This early phase I trial studies how well pembrolizumab works in treating patients with gastroesophageal adenocarcinoma that has spread to other places or cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.
This phase I/II trial studies the best dose and how well trifluridine/tipiracil hydrochloride combination agent TAS-102 (TAS-102) and nanoliposomal irinotecan work in treating patients with gastrointestinal cancers that have spread to other places in the body (metastatic) or cannot be removed by surgery. Drugs used in the chemotherapy, such as trifluridine/tipiracil hydrochloride combination agent TAS-102 and nanoliposomal irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II trial studies how well pembrolizumab works with capecitabine and radiation therapy in treating patients with mismatch repair deficient and Epstein-Barr virus positive gastric cancer. Monoclonal antibodies, such as pembrolizumab may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Giving pembrolizumab, capecitabine and radiation therapy may work better at treating gastric cancer.
This randomized pilot clinical trial studies health care coach support in reducing acute care use and cost in patients with cancer. Health care coach support may help cancer patients to make decisions about their care that matches what is important to them with symptom management.
This phase I/II trial studies the side effects and best dose of olaparib when given together with ramucirumab and how well they work in treating patients with gastric or gastroesophageal junction cancer that has spread to other places in the body (metastatic), has come back (recurrent), or cannot be removed by surgery (unresectable). Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as ramucirumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving olaparib and ramucirumab may work better in treating patients with gastric or gastroesophageal junction cancer compared to ramucirumab and paclitaxel (a chemotherapy drug) or ramucirumab alone.
This pilot clinical trial studies an electronic monitoring device of patient-reported outcomes (PROs) and function in improving patient-centered care in patients with gastrointestinal cancer undergoing surgery. Electronic monitoring is a technology-based way of asking patients about the quality of life, symptoms, and activity using online surveys and an activity tracking watch may make it easier for patients to tell their doctors and nurses about any issues before and after surgery. Electronic systems of assessing PROs may increase the depth and accuracy of available clinical data, save administrative time, prompt early intervention that improves the patient experience, foster patient-provider communication, improve patient safety, and enhance the consistency of data collection across multiple sites.