326 Clinical Trials for Various Conditions
This is a multisite, phase I/II clinical trial in children and young adults with newly-diagnosed high-grade glioma (HGG), diffuse midline glioma (DMG) and recurrent HGG/DMG, Medulloblastoma (MB), or ependymoma (EPN) to determine the safety, immunogenicity, and efficacy of a CMV-directed peptide vaccine plus checkpoint blockade.
Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.
This phase I/II trial tests the safety, side effects, and best dose of selinexor given in combination with standard radiation therapy in treating children and young adults with newly diagnosed diffuse intrinsic pontine glioma (DIPG) or high-grade glioma (HGG) with a genetic change called H3 K27M mutation. It also tests whether combination of selinexor and standard radiation therapy works to shrink tumors in this patient population. Glioma is a type of cancer that occurs in the brain or spine. Glioma is considered high risk (or high-grade) when it is growing and spreading quickly. The term, risk, refers to the chance of the cancer coming back after treatment. DIPG is a subtype of HGG that grows in the pons (a part of the brainstem that controls functions like breathing, swallowing, speaking, and eye movements). This trial has two parts. The only difference in treatment between the two parts is that some subjects treated in Part 1 may receive a different dose of selinexor than the subjects treated in Part 2. In Part 1 (also called the Dose-Finding Phase), investigators want to determine the dose of selinexor that can be given without causing side effects that are too severe. This dose is called the maximum tolerated dose (MTD). In Part 2 (also called the Efficacy Phase), investigators want to find out how effective the MTD of selinexor is against HGG or DIPG. Selinexor blocks a protein called CRM1, which may help keep cancer cells from growing and may kill them. It is a type of small molecule inhibitor called selective inhibitors of nuclear export (SINE). Radiation therapy uses high energy to kill tumor cells and shrink tumors. The combination of selinexor and radiation therapy may be effective in treating patients with newly-diagnosed DIPG and H3 K27M-Mutant HGG.
The goal of this study is to evaluate the safety of the study drug PTC596 (Unesbulin) taken in combination with radiotherapy (RT) when given to pediatric patients newly diagnosed with High-Grade Glioma (HGG) including diffuse intrinsic pontine glioma (DIPG). The main aims of the study are to: * Find the safe dose of the study drug PTC596that can be given without causing serious side effects. * Find out the amount of drug that enters blood (in all patients) and tumor (in patients who receive drug prior to a planned surgery for removal of their brain tumor) During the first cycle (6-7weeks), patients will receive drug orally twice a week in combination with daily RT. During subsequent cycles (4 weeks each), they will receive only the study drug orally twice a week. Funding Source - FDA OOPD
RATIONALE: Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Capecitabine may make tumor cells more sensitive to radiation therapy. Giving capecitabine together with radiation therapy may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of capecitabine when given together with radiation therapy in treating young patients with newly diagnosed, nonmetastatic brain stem glioma or high-grade glioma.
This is a phase I study to assess the safety and feasibility of IL-8 receptor modified patient-derived activated CD70 CAR T cell therapy in CD70+ pediatric high-grade glioma
This is a single-arm open-label phase 1 dose escalation/expansion trial assessing the safety and efficacy of concurrent intrathecal azacitidine and intrathecal nivolumab in recurrent high-grade glioma.
This phase I clinical trial studies the side effects and best dose of AZD1390 and to see how well it works when given together with radiation therapy for the treatment of pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma. AZD1390 is in a class of medications called kinase inhibitors. It works by blocking the signals that cause cancer cells to multiply. This helps to stop the spread of cancer cells. Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. Giving AZD1390 with radiation may be safe, tolerable, and/or effective in treating pediatric patients with high grade glioma, diffuse midline glioma or diffuse intrinsic pontine glioma.
This is a Phase II open-label study to investigate the safety and efficacy of ACT001 in patients with DIPG and H3K27-altered HGG.
This is an open-label, dose-finding study of XRD-0394 in subjects with newly diagnosed and recurrent high grade gliomas receiving radiation therapy, with and without concurrent temozolomide based on O6-Methylguanine-DNA methyltransferase (MGMT) status for patients with newly diagnosed high grade gliomas.
This is a multicenter, open-label study of DB107-RRV (formerly Toca 511) and DB107-FC (formerly Toca FC) when administered following surgical resection in newly diagnosed High Grade Glioma (HGG) patients. The study is designed to evaluate whether treatment with DB107-RRV in combination with DB107-FC when added to standard of care provides clinical benefit to newly diagnosed HGG when compared to historical performance previously determined in well controlled clinical trials published in the peer reviewed literature. This study is going to be conducted in newly diagnosed HGG patients receiving with maximum surgical resection treatment followed by radiation and temozolomide treatment using the established Stupp Protocol for O6-methylguanine-DNA methyl-transferase (MGMT) methylated patients or radiation therapy for MGMT unmethylated patients.
The goal of this study is to learn about a type of brain cancer called high-grade glioma. This study is for people who have previously received treatment for brain cancer, but the cancer has come back or gotten worse after treatment. The main question this study aims to answer is: is it safe for participants to take bicalutamide while receiving brain radiation treatment? Participants will: * Take bicalutamide every day for 6 months * Receive radiation treatment to the brain * Keep a diary of the when they take the bicalutamide and any side effects experienced * Visit the clinic once every 8 weeks for checkups and tests
Researchers will investigate the ability of Xevinapant to cross the blood-brain barrier and exert anti-tumor effects on rHGG through activation of apoptosis. Researchers hypothesize that oral administration of Xevinapant has acceptable safety and tolerability in patients with recurrent HGG and demonstrate pharmacokinetic and pharmacodynamic effects in HGG tumors. To that end, Researchers will engage in a phase I "window of opportunity" translational clinical trial in patients undergoing a clinically-indicated craniotomy for resection of recurrent tumors to evaluate the impact of treatment on rHGG.
The purpose of this study is to determine whether newly diagnosed high-grade glioma(s) that cannot be removed surgically change as a result of the study treatment; and to identify and evaluate the potential side effects (good and bad) of the study treatment in patients with newly diagnosed high-grade glioma(s) that cannot be removed surgically.
The purpose of this study is to measure the benefit of adding abemaciclib to the chemotherapy, temozolomide, for newly diagnosed high-grade glioma following radiotherapy. Your participation could last approximately 11 months and possibly longer depending upon how you and your tumor respond.
The goal of this study is to determine the response of the study drug loratinib in treating children who are newly diagnosed high-grade glioma with a fusion in ALK or ROS1. It will also evaluate the safety of lorlatinib when given with chemotherapy or after radiation therapy.
There is no consensus on the optimal treatment of patients with high-grade glioma, especially when patients have limited functioning performance at presentation (KPS ≤70). Therefore, there are varied practice patterns around pursuing biopsy, resection, or palliation (best supportive care). This study aims to characterize the impact of palliative care versus biopsy versus resection on survival and quality of life in these patients. Also, it will aim to determine if there is a subset of patients that benefit the most from resection or biopsy, for which outcome, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 3-arm cohort study of observational nature. Consecutive HGG patients will be treated with palliative care, biopsy, or resection at a 1:3:3 ratio. Primary endpoints are: 1) overall survival, and 2) quality of life at 6 weeks, 3 months and 6 months after initial presentation based on the EQ-5D, EORTC QLQ C30 and EORTC BN 20 questionnaires. Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year.
There are no guidelines or prospective studies defining the optimal surgical treatment for gliomas of older patients (≥70 years) or those with limited functioning performance at presentation (KPS ≤70). Therefore, the decision between resection and biopsy is varied, amongst neurosurgeons internationally and at times even within an instiutition. This study aims to compare the effects of maximal tumor resection versus tissue biopsy on survival, functional, neurological, and quality of life outcomes in these patient subgroups. Furthermore, it evaluates which modality would maximize the potential to undergo adjuvant treatment. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be treated with resection or biopsy at a 3:1 ratio. Primary endpoints are: 1) overall survival (OS) and 2) proportion of patients that have received adjuvant treatment with chemotherapy and radiotherapy. Secondary endpoints are 1) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months and 6 months after surgery 2) progression-free survival (PFS); 3) quality of life at 6 weeks, 3 months and 6 months after surgery and 4) frequency and severity of Serious Adverse Events (SAEs). Total duration of the study is 5 years. Patient inclusion is 4 years, follow-up is 1 year.
A greater extent of resection of the contrast-enhancing (CE) tumor part has been associated with improved outcomes in high-grade glioma patients. Recent results suggest that resection of the non-contrast-enhancing (NCE) part might yield even better survival outcomes (supramaximal resection, SMR). Therefore, this study evaluates the efficacy and safety of SMR with and without mapping techniques in HGG patients in terms of survival, functional, neurological, cognitive, and quality of life outcomes. Furthermore, it evaluates which patients benefit the most from SMR, and how they could be identified preoperatively. This study is an international, multicenter, prospective, 2-arm cohort study of observational nature. Consecutive HGG patients will be operated with supramaximal resection or maximal resection at a 1:3 ratio. Primary endpoints are: 1) overall survival and 2) proportion of patients with NIHSS (National Institute of Health Stroke Scale) deterioration at 6 weeks, 3 months, and 6 months postoperatively. Secondary endpoints are 1) residual CE and NCE tumor volume on postoperative T1-contrast and FLAIR MRI scans 2) progression-free survival; 3) onco-functional outcome, and 4) quality of life at 6 weeks, 3 months, and 6 months postoperatively. The study will be carried out by the centers affiliated with the European and North American Consortium and Registry for Intraoperative Mapping (ENCRAM).
The purpose of this study is to find out if performing additional Magnetic Resonance Image (MRI) scans of the subjects' brain during each week of the radiation treatment of their high-grade glioma will help improve the radiation treatment.
This study will administer the investigational drug, BDTX-1535 to eligible patients with recurrent high-grade glioma (HGG) and newly-diagnosed glioblastoma (nGBM). BDTX-1535 was designed to block a growth signal important to some cancers. BDTX-1535 is being tested in this study to see if it can be given safely to people who have tumors that can be dependent on that growth signal because of changes in a protein called EGFR. These gene changes are called amplifications, mutations, fusions or alterations and are found only in the tumors. The study design includes a Phase 0 component with PK/PD-trigger for participant enrollment into an Expansion Phase 1 component. The primary objective of the Phase 0 component is to evaluate the PK endpoints of BDTX-1535. The primary objective of the Phase 1 component is to establish the safe dose of BDTX-1535 to be used in participants with a specified treatment regimen, three of which include standard of care radiotherapy for nGBM participants.
The goal of this interventional study is to evaluate the efficacy of APG-157 in combination with Bevacizumab in subjects with recurrent high-grade glioma. The main questions the study aims to answer are: * Progression-free and overall survival of patients receiving this combination; * Quality of Life (QOL); and * Tumor response on imaging The participants will take APG-157 daily by dissolving two pastilles in their mouth at around breakfast, lunch and dinner time (total of six pastilles per day). The pastilles dissolve in the mouth. The participants will continue to receive Bevacizumab as standard of care.
The goal of this study is to perform genetic sequencing on brain tumors from children, adolescents, and young adult patients who have been newly diagnosed with a high-grade glioma. This molecular profiling will decide if patients are eligible to participate in a subsequent treatment-based clinical trial based on the genetic alterations identified in their tumor.
The objective of this study is to assess the tolerability, safety, and efficacy of Liposomal Curcumin (LC) in combination with radiotherapy (RT) and Temozolomide (TMZ) in patients with newly diagnosed High-Grade Gliomas (HGG).
This early phase I trial studies brain tumor (glioma) metabolism in response to eflornithine (DFMO) and polyamine transport inhibitor AMXT-1501 dicaprate (AMXT 1501) in patients with diffused or high grade glioma. Brain tumors use and produce certain molecules to survive and grow. DFMO is an irreversible inhibitor of ornithine decarboxylase, the enzyme catalyzing polyamine synthesis. AMXT 1501 is a polyamine transport inhibitor which prevents uptake of polyamines from the extracellular environment. This trial is being done to analyze how DFMO and AMXT 1501 affect brain tumor metabolism based on the molecules in the tumor's fluid.
This feasibility study will assess the clinical potential of a new imaging approach to detect viable high grade glioma (HGG) in pediatric and adult patients after standard of care radiation therapy (RT) with or without concurrent temozolomide (TMZ). Study participants will undergo simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) with O-(\[2-\[F-18\]fluoroethyl)-L-tyrosine (FET, amino acid transport) and 1H-1-(3-\[F-18\]fluoro-2-hydroxypropyl)-2-nitroimidazole (FMISO, hypoxia) at the time of standard of care imaging after completion of RT. The presence of viable tumor at this time point will be assessed on a per patient basis. Study participants will be followed clinically and with standard of care (SOC) imaging for up to 2 years after completion of PET/MRI to determine the nature of lesions seen on investigational imaging and to obtain patient outcome data. The imaging data will also be used to develop a semi-automated workflow suitable for implementation in clinical trials and standard of care PET/MRI studies.
The purpose of this study is to test the safety and feasibility of recording brain activity within and around high-grade glioma tumors at the time of surgery. A small biopsy will be taken at the sites of the recordings.
This is a phase 1 open-label, multicenter study to investigate tolerability, safety and PK properties of oral OKN-007 in patients with recurrent high-grade glioma.
The purpose of this study is to see if 18F-fluciclovine (Axumin®) PET imaging is useful and safe in the management of children with High Grade Gliomas. Investigators seek to determine if this imaging will help doctors tell the difference between tumor growth (progression) and other tumor changes that can occur after treatment.
Family caregivers of patients with a primary brain tumor experience a high caregiving load including assistance with activities of daily living without any formal training. It is not surprising that this vulnerable caregiver population reports high levels of distress along with numerous caregiving-related concerns, which may compromise their ability to provide quality care. This project will examine the feasibility and initial evidence for efficacy of a caregiving skills intervention aiming to improve caregiver and patient psychological health; caregiving efficacy and role adjustment; and reduce patient cancer-related symptoms and healthcare utilization.