Treatment Trials

230 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Safety Follow-up of Treatment With Remestemcel-L in Pediatric Participants Who Have Failed to Respond to Steroid Treatment for Acute GVHD
Description

Ongoing safety assessment follow-up to Protocol MSB-GVHD001 (NCT02336230) of remestemcel-L treatment in pediatric participants with acute graft versus host disease (aGVHD), following allogeneic hematopoietic stem cell transplant (HSCT), that have failed to respond to treatment with systemic corticosteroid therapy.

COMPLETED
A Prospective Study of Remestemcel-L, Ex-vivo Cultured Adult Human Mesenchymal Stromal Cells, for the Treatment of Pediatric Participants Who Have Failed to Respond to Steroid Treatment for Acute Graft-Versus-Host Disease (aGVHD)
Description

The study plans to treat at least 60 pediatric participants, male and female, between the ages of 2 months and 17 years inclusive with aGVHD following allogeneic hematopoietic stem cell transplant (HSCT) that has failed to respond to treatment with systemic corticosteroid therapy. Participants may have Grades C and D aGVHD involving the skin, liver and/or gastrointestinal (GI) tract or Grade B aGVHD involving the liver and/or GI tract, with or without concomitant skin disease.

NOT_YET_RECRUITING
Evaluating the Effects of Hemoglobin Threshold-specific Packed Red Blood Cell Transfusions on Quality of Life and Functional Outcomes in Patients With High-grade Myeloid Neoplasms, Acute Myeloid Leukemia, or B Acute Lymphoblastic Lymphoma/Leukemia
Description

This clinical trial evaluates the effects of hemoglobin threshold-specific packed red blood cell (PRBC) transfusions on quality of life and functional outcomes in patients who have undergone chemotherapy or an allogeneic hematopoietic stem cell transplant for a high-grade myeloid neoplasm, acute myeloid leukemia, or B acute lymphoblastic lymphoma/leukemia. Some types of chemotherapy and stem cell transplants can induce low platelet counts and/or anemia that requires PRBC transfusions. Given critical shortages in blood supply, and risks associated with transfusion of PRBC, there has been much investigation into the "minimum" hemoglobin level that effectively balances safety and toxicity in patients. This clinical trial evaluates the effects of giving PRBC transfusions based on a more restrictive hemoglobin threshold (\> 7 gm/dL) compared to a more liberal hemoglobin threshold (\> 9 gm/dL) on quality of life and functional outcomes. A more restrictive threshold may be just as effective at maintaining patient quality of life and function while decreasing side effects from blood transfusions and helping to conserve blood supply resources.

RECRUITING
Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia, Lymphoblastic Lymphoma, Burkitt Lymphoma/Leukemia, or Double-Hit Lymphoma/Leukemia
Description

This phase II trial studies the side effects and how well combination chemotherapy works in treating patients with acute lymphoblastic leukemia, lymphoblastic lymphoma, Burkitt lymphoma/leukemia, or double-hit lymphoma/leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as clofarabine, etoposide, cyclophosphamide, vincristine sulfate liposome, dexamethasone and bortezomib, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

TERMINATED
huJCAR014 CAR-T Cells in Treating Adult Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma or Acute Lymphoblastic Leukemia
Description

This phase I trial studies the side effects of huJCAR014 in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma or acute lymphoblastic leukemia. huJCAR014 CAR-T cells are made in the laboratory by genetically modifying a patient's T cells and may specifically kill cancer cells that have a molecule CD19 on their surfaces. In Stage 1, dose-finding studies will be conducted in 3 cohorts: 1. Aggressive B cell NHL 2. Low burden ALL 3. High burden ALL In Stage 2, studies may be conducted in one or more cohorts to collect further safety, PK, and efficacy information at the huJCAR014 dose level(s) selected in Stage 1 for the applicable cohort(s). There are two separate cohorts for stage 2: 1. Cohort 2A, CAR-naïve (n=10): patients who have never received CD19 CAR-T cell therapy. 2. Cohort 2B, CAR-exposed (n=27): patients who have previously failed CD19 CAR-T cell therapy.

COMPLETED
Dose Adjusted EPOCH Regimen in Combination With Ofatumumab or Rituximab in Treating Patients With Newly Diagnosed or Relapsed or Refractory Burkitt Lymphoma or Relapsed or Refractory Acute Lymphoblastic Leukemia
Description

This phase II trial studies how well a dose adjusted regimen consisting of etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride (EPOCH) works in combination with ofatumumab or rituximab in treating patients with Burkitt lymphoma that is newly diagnosed, or has returned after a period of improvement (relapsed), or has not responded to previous treatment (refractory) or relapsed or refractory acute lymphoblastic leukemia. Drugs used in chemotherapy, such as etoposide, prednisone, vincristine sulfate, cyclophosphamide, and doxorubicin hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as ofatumumab and rituximab, may interfere with the ability of cancer cells to grow and spread. Giving more than one drug (combination chemotherapy) together with monoclonal antibody therapy may kill more cancer cells.

RECRUITING
Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Acute Lymphoblastic Leukemia
Description

This phase I/II trial studies the side effects and best dose of inotuzumab ozogamicin and to see how well it works when given together with combination chemotherapy in treating patients with acute lymphoblastic leukemia. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called N-acetyl-gamma-calicheamicin dimethyl hydrazide (CalichDMH). Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers CalichDMH to kill them. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving inotuzumab ozogamicin together with combination chemotherapy may be a better treatment for acute lymphoblastic leukemia.

RECRUITING
Gene Therapy for CD19-Positive Hematologic Malignancies
Description

This is a Phase 1/2, first-in-human, open-label, dose-escalating trial designed to assess the safety and efficacy of VNX-101 in patients with relapsed or refractory CD19-positive hematologic malignancies.

RECRUITING
Genetically Engineered Cells (Anti-CD19/CD20/CD22 CAR T-cells) for the Treatment of Relapsed or Refractory Lymphoid Malignancies
Description

This phase I trial tests the safety, side effects and best infusion dose of genetically engineered cells called anti-CD19/CD20/CD22 chimeric antigen receptor (CAR) T-cells following a short course of chemotherapy with cyclophosphamide and fludarabine in treating patients with lymphoid cancers (malignancies) that have come back (recurrent) or do not respond to treatment (refractory). Lymphoid malignancies eligible for this trial are: non-Hodgkin lymphoma (NHL), acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL), and B-prolymphocytic leukemia (B-PLL). T-cells (a type of white blood cell) form part of the body's immune system. CAR-T is a type of cell therapy that is used with gene-based therapies. CAR T-cells are made by taking a patient's own T-cells and genetically modifying them with a virus so that they are recognized by a group of proteins called CD19/CD20/CD22 which are found on the surface of cancer cells. Anti-CD19/CD20/CD22 CAR T-cells can recognize CD19/CD20/CD22, bind to the cancer cells and kill them. Giving combination chemotherapy helps prepare the body before CAR T-cell therapy. Giving CAR-T after cyclophosphamide and fludarabine may kill more tumor cells.

TERMINATED
Ibrutinib in Treating Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma in Patients With HIV Infection
Description

This phase I trial studies the side effects and best dose of ibrutinib in treating B-cell non-Hodgkin lymphoma that has returned or does not respond to treatment in patients with human immunodeficiency virus (HIV) infection. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether it is safe for patients with HIV infection to receive ibrutinib while also taking anti-HIV drugs.

COMPLETED
Alisertib in Combination With Vorinostat in Treating Patients With Relapsed or Recurrent Hodgkin Lymphoma, B-Cell Non-Hodgkin Lymphoma, or Peripheral T-Cell Lymphoma
Description

This phase I trial studies the side effects and the best dose of alisertib when given together with vorinostat in treating patients with Hodgkin lymphoma, B-cell non-Hodgkin lymphoma, or peripheral T-cell lymphoma that has come back. Alisertib and vorinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Veliparib, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory Lymphoma, Multiple Myeloma, or Solid Tumors
Description

This phase I/II trial studies the side effects and the best dose of veliparib when given together with bendamustine hydrochloride and rituximab and to see how well they work in treating patients with lymphoma, multiple myeloma, or solid tumors that have come back or have not responded to treatment. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving veliparib together with bendamustine hydrochloride and rituximab may kill more cancer cells.

UNKNOWN
NK Cells in Cord Blood Transplantation
Description

This phase I trial studies the side effects and best way to give natural killer cells and donor umbilical cord blood transplant in treating patients with hematological malignancies. Giving chemotherapy with or without total body irradiation before a donor umbilical cord blood transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

RECRUITING
Personalized NK Cell Therapy in CBT
Description

This phase II clinical trial studies how well personalized natural killer (NK) cell therapy works after chemotherapy and umbilical cord blood transplant in treating patients with myelodysplastic syndrome, leukemia, lymphoma or multiple myeloma. This clinical trial will test cord blood (CB) selection for human leukocyte antigen (HLA)-C1/x recipients based on HLA-killer-cell immunoglobulin-like receptor (KIR) typing, and adoptive therapy with CB-derived NK cells for HLA-C2/C2 patients. Natural killer cells may kill tumor cells that remain in the body after chemotherapy treatment and lessen the risk of graft versus host disease after cord blood transplant.

COMPLETED
Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery
Description

This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Conditions
Adult Acute Lymphoblastic Leukemia in RemissionAdult B Acute Lymphoblastic LeukemiaAdult Hepatocellular CarcinomaAdult Nasal Type Extranodal NK/T-Cell LymphomaAdult Solid NeoplasmAdult T Acute Lymphoblastic LeukemiaAdvanced Adult Hepatocellular CarcinomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-Cell LymphomaChronic Lymphocytic LeukemiaCutaneous B-Cell Non-Hodgkin LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid TissueHepatosplenic T-Cell LymphomaIntraocular LymphomaLocalized Non-Resectable Adult Liver CarcinomaLocalized Resectable Adult Liver CarcinomaLymphomatous Involvement of Non-Cutaneous Extranodal SiteMature T-Cell and NK-Cell Non-Hodgkin LymphomaNodal Marginal Zone LymphomaProgressive Hairy Cell Leukemia Initial TreatmentRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic LymphomaRecurrent Adult Liver CarcinomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-Cell Leukemia/LymphomaRecurrent Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides and Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaSmall Intestinal LymphomaSplenic Marginal Zone LymphomaStage II Small Lymphocytic LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-Cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-Cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides and Sezary SyndromeStage IIIB Mycosis Fungoides and Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-Cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-Cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides and Sezary SyndromeStage IVB Mycosis Fungoides and Sezary SyndromeT-Cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUntreated Adult Acute Lymphoblastic LeukemiaUntreated Hairy Cell LeukemiaWaldenstrom Macroglobulinemia
COMPLETED
Prevention of Graft-Versus-Host Disease in Patients Undergoing Bone Marrow Transplantation
Description

RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells can make an immune response against the body's normal tissues. Stem cells that have been treated in the laboratory to remove lymphocytes may prevent this from happening. PURPOSE: Clinical trial to prevent graft-versus-host disease in patients undergoing bone marrow transplantation.

Conditions
COMPLETED
St. John's Wort in Relieving Fatigue in Patients Undergoing Chemotherapy or Hormone Therapy for Cancer
Description

RATIONALE: Giving St. John's wort may be effective in relieving fatigue in patients with cancer who are undergoing chemotherapy or hormone therapy. PURPOSE: Randomized phase III trial to determine the effectiveness of St. John's wort in relieving fatigue in patients who are undergoing chemotherapy or hormone therapy for cancer.

COMPLETED
Chemotherapy, Radiation Therapy, and Peripheral Stem Cell Transplantation in Treating Patients With Hematologic Cancer
Description

RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by the chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells are rejected by the body's normal tissues. Transplanting donated cells that have been treated with psoralen may prevent this from happening. PURPOSE: Phase I trial to study the effectiveness of chemotherapy, radiation therapy, and psoralen-treated donor cells in treating patients who are undergoing peripheral stem cell transplantation for hematologic cancer.

COMPLETED
Ixabepilone in Treating Young Patients With Solid Tumors or Leukemia That Haven't Responded to Therapy
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase I trial is studying the side effects and best dose of ixabepilone in treating young patients with relapsed or refractory solid tumors or leukemia.

COMPLETED
Rituximab in Treating Patients Undergoing Donor Peripheral Blood Stem Cell Transplant for Relapsed or Refractory B-cell Lymphoma
Description

This phase II trial studies giving rituximab before and after a donor peripheral blood stem cell transplant in patients with B-cell lymphoma that does not respond to treatment (refractory) or has come back after a period of improvement (relapsed). Monoclonal antibodies, such as rituximab, can interfere with the ability of cancer cells to grow and spread. Giving rituximab before and after a donor peripheral blood stem cell transplant may help stop cancer from coming back and may help keep the patient's immune system from rejecting the donor's stem cells.

TERMINATED
CPI-613, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the side effects and best dose of CPI-613 (6,8-bis\[benzylthio\]octanoic acid) when given together with bendamustine hydrochloride and rituximab in treating patients with B-cell non-Hodgkin lymphoma that has come back or has not responded to treatment. Drugs used in chemotherapy, such as 6,8-bis(benzylthio)octanoic acid and bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Monoclonal antibodies, such as rituximab, may find cancer cells and help kill them. Giving 6,8-bis(benzylthio)octanoic acid with bendamustine hydrochloride and rituximab may kill more cancer cells.

COMPLETED
Rituximab Plus Interleukin-2 in Treating Patients With Hematologic Cancer
Description

Monoclonal antibodies such as rituximab can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. Interleukin-2 may stimulate a person's white blood cells to kill cancer cells. Combining rituximab with interleukin-2 may kill more cancer cells. Phase I trial to study the effectiveness of rituximab plus interleukin-2 in treating patients who have hematologic cancer.

Conditions
B-cell Adult Acute Lymphoblastic LeukemiaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Small Lymphocytic LymphomaSplenic Marginal Zone LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic Lymphoma
COMPLETED
Vaccine Therapy in Preventing Cytomegalovirus Infection in Patients With Hematological Malignancies Undergoing Donor Stem Cell Transplant
Description

This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Acute Promyelocytic Leukemia (M3)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Nodular Lymphocyte Predominant Hodgkin LymphomaAnaplastic Large Cell LymphomaB-cell Adult Acute Lymphoblastic LeukemiaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaContiguous Stage II Adult Burkitt LymphomaContiguous Stage II Adult Diffuse Large Cell LymphomaContiguous Stage II Adult Lymphoblastic LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Grade 3 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Small Lymphocytic LymphomaCytomegalovirus Infectionde Novo Myelodysplastic SyndromesEssential ThrombocythemiaExtramedullary PlasmacytomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueIsolated Plasmacytoma of BoneMonoclonal Gammopathy of Undetermined SignificanceNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPeripheral T-cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesPrimary Central Nervous System Hodgkin LymphomaPrimary Central Nervous System Non-Hodgkin LymphomaPrimary MyelofibrosisProgressive Hairy Cell Leukemia, Initial TreatmentProlymphocytic LeukemiaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Hodgkin LymphomaStage I Adult Lymphoblastic LymphomaStage I Adult T-cell Leukemia/LymphomaStage I Chronic Lymphocytic LeukemiaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Multiple MyelomaStage I Small Lymphocytic LymphomaStage IA Mycosis Fungoides/Sezary SyndromeStage IB Mycosis Fungoides/Sezary SyndromeStage II Adult Hodgkin LymphomaStage II Adult T-cell Leukemia/LymphomaStage II Chronic Lymphocytic LeukemiaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage II Multiple MyelomaStage IIA Mycosis Fungoides/Sezary SyndromeStage IIB Mycosis Fungoides/Sezary SyndromeStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Multiple MyelomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides/Sezary SyndromeStage IIIB Mycosis Fungoides/Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides/Sezary SyndromeStage IVB Mycosis Fungoides/Sezary SyndromeT-cell Adult Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaUntreated Adult Acute Myeloid LeukemiaUntreated Hairy Cell LeukemiaWaldenström Macroglobulinemia
COMPLETED
Panobinostat and Everolimus in Treating Patients With Recurrent Multiple Myeloma, Non-Hodgkin Lymphoma, or Hodgkin Lymphoma
Description

This phase I/II trial studies the side effects and best dose of panobinostat and everolimus when given together and to see how well they work in treating patients with multiple myeloma, non-Hodgkin lymphoma, or Hodgkin lymphoma that has come back. Panobinostat and everolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Donor Umbilical Cord Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant (UCBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the stem cells from an unrelated donor, that do not exactly match the patient's blood, are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving antithymocyte globulin before transplant and cyclosporine and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This phase II trial is studying how well donor umbilical cord blood stem cell transplant works in treating patients with hematologic malignancies.

Conditions
Acute Myeloid Leukemia With Multilineage Dysplasia Following Myelodysplastic SyndromeAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Megakaryoblastic Leukemia (M7)Adult Acute Minimally Differentiated Myeloid Leukemia (M0)Adult Acute Monoblastic Leukemia (M5a)Adult Acute Monocytic Leukemia (M5b)Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Erythroleukemia (M6a)Adult Nasal Type Extranodal NK/T-cell LymphomaAdult Pure Erythroid Leukemia (M6b)B-cell Adult Acute Lymphoblastic LeukemiaB-cell Childhood Acute Lymphoblastic LeukemiaBlastic Phase Chronic Myelogenous LeukemiaBurkitt LymphomaChildhood Acute Erythroleukemia (M6)Childhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Megakaryocytic Leukemia (M7)Childhood Acute Minimally Differentiated Myeloid Leukemia (M0)Childhood Acute Monoblastic Leukemia (M5a)Childhood Acute Monocytic Leukemia (M5b)Childhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaPreviously Treated Myelodysplastic SyndromesProlymphocytic LeukemiaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSecondary MyelofibrosisSplenic Marginal Zone LymphomaStage I Chronic Lymphocytic LeukemiaStage II Chronic Lymphocytic LeukemiaStage III Chronic Lymphocytic LeukemiaStage IV Chronic Lymphocytic LeukemiaT-cell Adult Acute Lymphoblastic LeukemiaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaWaldenstrom Macroglobulinemia
COMPLETED
Study of Akt Inhibitor MK2206 in Patients With Relapsed Lymphoma
Description

This phase II clinical trial studies how well Akt inhibitor MK2206 works in treating patients with relapsed lymphoma. Akt inhibitor MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
CART19 to Treat B-Cell Leukemia or Lymphoma That Are Resistant or Refractory to Chemotherapy
Description

This is a Pilot/Phase I, single arm, single center, open label study to determine the safety, efficacy and cellular kinetics of CART19 (CTL019) in chemotherapy resistant or refractory CD19+ leukemia and lymphoma subjects. The study consists of three Phases: 1) a Screening Phase, followed by 2) an Intervention/Treatment Phase consisting of apheresis, lymphodepleting chemotherapy (determined by the Investigator and based on subject's disease burden and histology, as well as on the prior chemotherapy history received), infusions of CTL019, tumor collection by bone marrow aspiration or lymph node biopsy (optional, depending on availability), and 3) a Follow-up Phase. The suitability of subjects' T cells for CTL019 manufacturing was determined at study entry. Subjects with adequate T cells were leukapheresed to obtain large numbers of peripheral blood mononuclear cells for CTL019 manufacturing. The T cells were purified from the peripheral blood mononuclear cells, transduced with TCR-ζ/4-1BB lentiviral vector, expanded in vitro and then frozen for future administration. The number of subjects who had inadequate T cell collections, expansion or manufacturing compared to the number of subjects who had T cells successfully manufactured is a primary measure of feasibility of this study. Unless contraindicated and medically not advisable based on previous chemotherapy, subjects were given conditioning chemotherapy prior to CTL019 infusion. The chemotherapy was completed 1 to 4 days before the planned infusion of the first dose of CTL019. Up to 20 evaluable subjects with CD19+ leukemia or lymphoma were planned to be dosed with CTL019. A single dose of CTL019 (consisting of approximately 5x10\^9 total cells, with a minimal acceptable dose for infusion of 1.5x10\^7 CTL019 cells) was to be given to subjects as fractions (10%, 30% and 60% of the total dose) on Day 0, 1 and 2. A second 100% dose of CTL019 was initially permitted to be given on Day 11 to 14 to subjects, providing they had adequate tolerance to the first dose and sufficient CTL019 was manufactured.

TERMINATED
Oxaliplatin, Ifosfamide and Etoposide in Treating Young Patients With Recurrent or Refractory Solid Tumors or Lymphoma
Description

This phase I trial is studying the side effects and best dose of oxaliplatin and etoposide in treating young patients with recurrent or refractory solid tumors or lymphomas. Drugs used in chemotherapy, such as oxaliplatin and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Oxaliplatin may also help etoposide work better by making cancer cells more sensitive to the drug. Giving oxaliplatin together with etoposide may kill more cancer cells.

COMPLETED
Radiolabeled Monoclonal Antibody Therapy Plus Peripheral Stem Cell Transplantation in Treating Patients With Lymphoma or Waldenstrom's Macroglobulinemia
Description

RATIONALE: Radiolabeled monoclonal antibodies can locate cancer cells and deliver cancer-killing substances to them without harming normal cells. Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by monoclonal antibody therapy used to kill cancer cells. PURPOSE: Phase I/II trial to study the effectiveness of radiolabeled monoclonal antibody therapy plus peripheral stem cell transplantation in treating patients who have lymphoma or Waldenstrom's macroglobulinemia that has not responded to previous therapy.

COMPLETED
Biological Therapy in Treating Patients Undergoing Radiation Therapy, Chemotherapy, and Peripheral Stem Cell Transplantation for Hematologic Cancer
Description

RATIONALE: Biological therapy using growth factors may be effective in reducing side effects in patients who have hematologic cancer and are receiving radiation therapy, chemotherapy, and peripheral stem cell transplantation. PURPOSE: Randomized phase II trial to study the effectiveness of biological therapy to reduce side effects in patients who are undergoing radiation therapy, chemotherapy, and peripheral stem cell transplantation in treating lymphoma or leukemia.