287 Clinical Trials for Various Conditions
RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells can make an immune response against the body's normal tissues. Stem cells that have been treated in the laboratory to remove lymphocytes may prevent this from happening. PURPOSE: Clinical trial to prevent graft-versus-host disease in patients undergoing bone marrow transplantation.
This is a clinical trial to see if treatment with etanercept for early skin graft-versus-host disease (GVHD) can effectively treat and prevent progression of the disease without using high dose steroids. GVHD is a common complication following a bone marrow transplant from another donor. GVHD occurs after transplant, when the donor's blood cells (called lymphocytes) recognize parts of your body, such as the skin, as foreign. A certain chemical, called Tumor Necrosis Factor, or TNF, also causes damage to the skin. The main effect on the skin is a red rash, when the skin GVHD is mild, but in more severe forms the skin can blister. We have been studying GVHD at the University of Michigan for the past decade. We know that high levels of TNF makes GVHD worse. Our research has shown that adding an anti-TNF drug (called etanercept or Enbrel®) to the standard GVHD treatment of high dose steroids leads to improvement in the GVHD in twice as many patients compared to when steroids alone are used. It is now standard practice at the University of Michigan and many other centers to treat GVHD with both steroids and etanercept. The management of early skin GVHD for most patients involves treatment with steroids, given both as a cream and by either the mouth (in pills) or IV. Early skin GVHD is also called grade I GVHD, which means the skin rash covers less than half of the body. Steroid treatment can be effective; however, it also causes many complications such as an increased risk of infection, weight gain, stomach ulcers, muscle weakness and bone damage, among many others. We have developed this study to test whether starting treatment with etanercept and steroid creams alone can treat the GVHD without requiring the use of high dose steroids. The goal is to avoid the complications that come with high dose oral or IV steroid treatment. The high dose steroid treatment would only begin if your GVHD got worse.
Ongoing safety assessment follow-up to Protocol MSB-GVHD001 (NCT02336230) of remestemcel-L treatment in pediatric participants with acute graft versus host disease (aGVHD), following allogeneic hematopoietic stem cell transplant (HSCT), that have failed to respond to treatment with systemic corticosteroid therapy.
RATIONALE: Radiation therapy uses high-energy x-rays to damage cancer cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Peripheral stem cell transplantation may allow doctors to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: Phase I/II trial to study the effectiveness of radiation therapy and chemotherapy plus peripheral stem cell transplantation in treating patients who have high-grade lymphoma or acute lymphoblastic leukemia.
This clinical trial evaluates the effects of hemoglobin threshold-specific packed red blood cell (PRBC) transfusions on quality of life and functional outcomes in patients who have undergone chemotherapy or an allogeneic hematopoietic stem cell transplant for a high-grade myeloid neoplasm, acute myeloid leukemia, or B acute lymphoblastic lymphoma/leukemia. Some types of chemotherapy and stem cell transplants can induce low platelet counts and/or anemia that requires PRBC transfusions. Given critical shortages in blood supply, and risks associated with transfusion of PRBC, there has been much investigation into the "minimum" hemoglobin level that effectively balances safety and toxicity in patients. This clinical trial evaluates the effects of giving PRBC transfusions based on a more restrictive hemoglobin threshold (\> 7 gm/dL) compared to a more liberal hemoglobin threshold (\> 9 gm/dL) on quality of life and functional outcomes. A more restrictive threshold may be just as effective at maintaining patient quality of life and function while decreasing side effects from blood transfusions and helping to conserve blood supply resources.
This Phase 1 study will evaluate the safety, tolerability, pharmacokinetics/pharmacodynamics (PK/PD), and clinical activity of KT-253 in adult patients with relapsed or refractory (R/R) high grade myeloid malignancies, acute lymphocytic leukemia (ALL), R/R lymphoma, myelofibrosis, and R/R solid tumors. The study will identify the pharmacologically optimal dose(s) (MTD) of KT-253 as the recommended Phase 2 dose (RP2D), based on all safety, PK, PD, and efficacy data.
This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Beclomethasone may be an effective treatment for graft-versus-host disease. PURPOSE: Phase I/II trial to study the effectiveness of beclomethasone in treating patients who have graft-versus-host disease of the esophagus, stomach, small intestine, or colon.
The purpose of this study is to evaluate the effectiveness of Fecal Microbiota Transplant (FMT) treatment in high-risk acute graft-versus-host disease (GVHD). This research study involves an experimental intervention called FMT.
This is an open-label, randomized, Phase 3, multicenter trial, which has been designed to compare the efficacy and safety of T-Guard to ruxolitinib in patients with Grade III or IV Steroid-Refractory acute Graft-Versus-Host Disease (SR-aGVHD). The primary hypothesis is that T-Guard treatment will improve the Day 28 complete response (CR) rate in patients with Grades III and IV SR-aGVHD compared to ruxolitinib.
The study plans to treat at least 60 pediatric participants, male and female, between the ages of 2 months and 17 years inclusive with aGVHD following allogeneic hematopoietic stem cell transplant (HSCT) that has failed to respond to treatment with systemic corticosteroid therapy. Participants may have Grades C and D aGVHD involving the skin, liver and/or gastrointestinal (GI) tract or Grade B aGVHD involving the liver and/or GI tract, with or without concomitant skin disease.
This phase II trial is studying how well rituximab works in preventing acute graft-versus-host disease (GVHD) in patients undergoing a donor stem cell transplant for hematologic cancer. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving a monoclonal antibody, rituximab, together with anti-thymocyte globulin, tacrolimus, and mycophenolate mofetil before and after the transplant may stop this from happening
RATIONALE: Studying samples of blood from patients with cancer in the laboratory may help doctors predict whether patients undergoing donor stem cell transplant will develop acute graft-versus-host disease. PURPOSE: This clinical trial is studying T cells to see how well they help in predicting acute graft-versus-host disease in patients undergoing donor stem cell transplant.
RATIONALE: Beclomethasone dipropionate may be effective in preventing acute graft-versus-host disease in patients undergoing a stem cell transplant for hematologic cancer. PURPOSE: This randomized phase II trial is studying how well beclomethasone dipropionate works in preventing acute graft-versus-host disease in patients undergoing a donor stem cell transplant for hematologic cancer.
RATIONALE: Alemtuzumab and glucocorticoids, such as prednisone or methylprednisolone, may be an effective treatment for acute graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This phase II trial is studying how well giving alemtuzumab together with glucocorticoids works in treating newly diagnosed acute graft-versus-host disease in patients who have undergone donor stem cell transplant.
RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.
RATIONALE: Donor mesenchymal stem cell infusion may be an effective treatment for acute or chronic graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This phase I trial is studying the side effects and best dose of donor mesenchymal stem cells in treating patients with acute or chronic graft-versus-host disease after undergoing a donor stem cell transplant.
RATIONALE: Methotrexate and glucocorticoid therapy, such as prednisone or methylprednisolone, may be an effective treatment for acute graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This phase II trial is studying how well giving methotrexate together with glucocorticoids works in treating patients with newly diagnosed acute graft-versus-host disease after donor stem cell transplant.
This randomized phase II trial studies how well giving tacrolimus and mycophenolate mofetil (MMF) with or without sirolimus works in preventing acute graft-versus-host disease (GVHD) in patients undergoing donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body-irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving MMF and tacrolimus with or without sirolimus after transplant may stop this from happening.
RATIONALE: Tacrolimus and mycophenolate mofetil may be an effective treatment for graft-versus-host disease caused by donor stem cell transplantation. PURPOSE: This phase II trial is studying how well giving tacrolimus together with mycophenolate mofetil works in preventing acute graft-versus-host disease in patients who are undergoing donor stem cell transplantation for advanced hematologic cancer.
RATIONALE: Sirolimus, tacrolimus, and methotrexate may be effective in preventing acute graft-versus-host disease in patients who are undergoing donor stem cell transplantation. PURPOSE: This phase I/II trial is studying the side effects of sirolimus when given together with tacrolimus and methotrexate and to see how well they work in preventing acute graft-versus-host disease in patients who are undergoing donor stem cell transplantation for hematologic cancer.
This phase II trial studies the effect of CPX-351 followed by donor stem cell transplantation versus immediate donor stem cell transplantation in treating patients with high-grade myeloid cancers with measurable residual disease. Chemotherapy drugs, such as CPX-351, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before donor stem cell transplantation may help kill cancer cells in the body and make room in the patient's bone marrow for new blood-forming cells (stem cells) to grow.
A Phase IIa single arm open-label study to investigate the safety, tolerability, and PK of F-652 in combination with systemic corticosteroids in subjects who have undergone Hematopoietic Stem Cell Transplantation (HSCT) and have newly diagnosed grade II-IV lower GI acute Graft Verses Host Disease (aGVHD). Treatment with F-652 will be once a week for 4 weeks, with post treatment follow up visits on days 28, 56, 180 and 365.
This clinical trial studies how well early stem cell transplantation works in treating patients with high-grade myeloid neoplasms that has come back after a period of improvement or does not respond to treatment. Drugs used in chemotherapy, such as filgrastim, cladribine, cytarabine and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy before a donor peripheral blood cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells. Early stem cell transplantation may result in more successful treatment for patients with high-grade myeloid neoplasms.
This study is being performed to develop assays to determine the impact of the therapy patients receive for treatment of AML or MDS and to determine if these tests can identify those patients who are at a greater risk for having their disease relapse.
RATIONALE: Learning about the side effects of stereotactic radiosurgery in patients with brain tumors or other brain disorders may help doctors plan treatment and help patients live more comfortably. PURPOSE: This clinical trial is studying the acute side effects in patients who are undergoing stereotactic radiosurgery for brain tumors or other brain disorders.
This phase I trial finds the best dose of PVEK when given together with fludarabine, cytarabine, granulocyte colony-stimulating factor (G-CSF), and idarubicin, (FLAG-Ida) regimen and studies the effectiveness of this combination therapy in treating patients with newly diagnosed adverse risk acute myeloid leukemia (AML) and other high-grade myeloid neoplasms. PVEK is a monoclonal antibody linked to a chemotherapy drug. PVEK is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD123 receptors, and delivers the chemotherapy drug to kill them. Chemotherapy drugs, such as idarubicin, fludarabine, high-dose cytarabine work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. G-CSF helps the bone marrow make more white blood cells in patients with low white blood cell count due to cancer treatment. Giving PVEK with the FLAG-Ida regimen may be a safe and effective treatment for patients with acute myeloid leukemia and other high-grade myeloid neoplasms.
This phase II, open-label, randomized trial will compare the efficacy of the novel regimen of cladribine/low-dose cytarabine alternating with decitabine to the current standard of care regimen of hypomethylating agents (decitabine or azacitidine) plus venetoclax in patients with acute myeloid leukemia (AML) or high-grade myelodysplastic syndrome (MDS) who are either elderly or unfit for intensive induction. Subjects will be randomized to be treated with either cladribine/low-dose cytarabine alternating with decitabine (Arm A) or decitabine or azacitadine plus venetoclax (Arm B).
This phase I/II trial finds the best dose, side effects and how well giving venetoclax in combination with cladribine, cytarabine, granulocyte colony-stimulating factor, and mitoxantrone (CLAG-M) in treating patients with acute myeloid leukemia and high-grade myeloid neoplasms. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Chemotherapy drugs, such as cladribine, cytarabine, and mitoxantrone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax with CLAG-M may kill more cancer cells.
This phase I trial studies the side effects and best dose of a chemotherapy regimen given by continuous intravenous infusion (CI-CLAM), and to see how well it works in treating patients with acute myeloid leukemia that has come back (relapsed) or does not respond to treatment (refractory) or other high-grade myeloid neoplasms. Drugs used in CI-CLAM include cladribine, cytarabine and mitoxantrone, and work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Continuous intravenous infusion involves giving drugs over a time duration of equal to or more than 24 hours. Giving CLAM via continuous infusion may result in fewer side effects and have similar effectiveness when compared to giving CLAM over the shorter standard amount of time.