4 Clinical Trials for Various Conditions
The purpose of this study is to determine if the cone beam computed tomography (CBCT)-guided navigation bronchoscopy is better in diagnosing lung nodules compared to navigation bronchoscopy alone.
Navigational bronchoscopy (NB) is used to access peripheral and central parenchymal lung lesions via endobronchial and transbronchial approach. Currently there are multiple platforms available to provide guidance to reach the peripheral and central lesions in the lung which are inaccessible via traditional video bronchoscopy. Traditionally NB is done under fluoroscopic guidance using C-arm but with development of Cone Beam CT and 3D reconstruction technology, fluoroscopy can be enhanced to much higher resolution and can also provide real time 3D augmentation of the lesion. It also enables the user to obtain a CT of the Chest to confirm the real time location of the lesion and the bronchoscopic biopsy catheter and instruments. This has proven to improve the yield and sensitivity of Navigational bronchoscopic guided Biopsy of the lung nodules and masses. Out of the various navigational platforms we have, most of them are based on Electromagnetic guidance and some on Shape sensing technology. Some of the platforms have fixed angle catheter while the newer robotic platforms have articulating catheters with much more range of motion. So far we do not have any data directly comparing the diagnostic yield of Electromagnetic navigational bronchoscopy with Robotic shape sensing guided bronchoscopy while using Cone Beam CT and Augmented fluoroscopy with both the platforms. With my study, I want to examine the change in diagnostic yield and sensitivity of fixed angle ENB guided bronchoscopy and articulating robotic shape sensing bronchoscopy both using Cone Beam CT with 3D reconstruction.
Electromagnetic navigation bronchoscopy (ENB) is used to access peripheral and central parenchymal lung lesions via endobronchial and transbronchial approach. Traditionally ENB is done under fluoroscopic guidance using C-arm but with development of Cone Beam CT and 3D reconstruction technology, fluoroscopy can be enhanced to much higher resolution and can also provide real time 3D augmentation of the lesion. It also enables the user to obtain a CT of the Chest to confirm the real time location of the lesion and the bronchoscopic biopsy catheter and instruments. This is thought to improve the yield and sensitivity of ENB guided Biopsy of the lung nodules and masses but has not been proven in a prospective trial. With my study, I want to examine the effect of Cone Beam CT with 3D reconstruction on the diagnostic yield and sensitivity of Electromagnetic Navigational Bronchoscopic biopsy of the lung lesions.
The overall goal is to evaluate the role of a Virtual Navigation (VN) system (the Virtual Navigator) in the bronchoscopic evaluation and tissue sampling of lung cancer and other chest lesions at the Penn State Hershey Medical Center (HMC). The Virtual Navigator is a software package that runs on a mobile Windows-based computer. The computer takes in up to four clinical image/video sources, ordered by the clinician for clinical purposes: 1) 3D CT (computed tomography) imaging scan; 2) 3D PET (positron emission tomography) imaging scan (optional); 3) Bronchoscopic video of the airway tree interior; 4) Ultrasound video of scanned anatomy outside the airways, as provided by an endobronchial ultrasound (EBUS) probe (optional). During a live guided procedure, the Virtual Navigator presents images that assist with navigating the bronchoscope to predesignated chest lesions. Lung cancer patients that present a suspicious peripheral tumor on their chest CT scan are often prescribed to undergo a diagnosis-and-staging bronchoscopy, whereby the bronchoscopist examines both the suspect tumor and any identified central-chest lymph nodes. For the clinical study, we consider bronchoscopy performance for two cohorts: 1) a cohort of consented patients who undergo image-guided bronchoscopy via the Virtual Navigator; and 2) a historical controls cohort consisting of patients who underwent bronchoscopy recently at our medical center (state-of-the-art bronchoscopy practice). The study's general hypothesis is that an image-guided bronchoscopy system (the Virtual Navigator) that integrates 3D imaging, bronchoscopy, and EBUS images enables more complete evaluation and sampling of chest lesions than current state-of-the-art clinical techniques. More specifically, for peripheral-tumor diagnosis, the sub-hypothesis is that the VN system increases diagnostic biopsy yield as compared to state-of-the-art bronchoscopy practice; for central-chest nodal staging, the sub-hypothesis is that the VN system enables the sampling of more lymph nodes than state-of-the-art bronchoscopy practice.