Treatment Trials

8 Clinical Trials for Various Conditions

Focus your search

WITHDRAWN
TCR Genetically Engineered PBMC and PBSC After Melphalan Conditioning Regimen in Treating Participants With Relapsed and Refractory Multiple Myeloma
Description

This phase I trial studies the side effects of NY-ESO-1 TCR engineered peripheral blood mononuclear cells (PBMC) and peripheral blood stem cells (PBSC) after melphalan conditioning regimen in treating participants with multiple myeloma that has come back or does not respond to treatment. The melphalan conditioning chemotherapy makes room in the patient?s bone marrow for new blood cells (PBMC) and blood-forming cells (stem cells) to grow. Giving NY-ESO-1 TCR PBMC and stem cells after the conditioning chemotherapy is intended to replace the immune system with new immune cells that have been redirected to attack and kill the cancer cells and thereby improve immune system function against cancer. Giving NY-ESO-1 TCR PBMC and PBSC after melphalan may work better at treating multiple myeloma.

COMPLETED
Modified T Cells, Chemotherapy, and Aldesleukin With or Without LV305 and CMB305 in Treating Participants With Advanced or Recurrent Sarcoma
Description

This phase I trial studies how well autologous NY-ESO-1-specific CD8-positive T lymphocytes (modified T lymphocytes \[T cells\]), chemotherapy, and aldesleukin with or without dendritic cell-targeting lentiviral vector ID-LV305 (LV305) and immunotherapeutic combination product CMB305 (CMB305) work in treating participants with sarcoma that has spread to other places in the body (advanced) or that has come back (recurrent). Modified T cells used in this study are taken from participants, are changed in a laboratory, and may "kill" some types of tumor cells. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Cyclophosphamide may help the body get ready to receive the modified T cells. Interleukins, such as aldesleukin, are proteins made by white blood cells and other cells in the body and may help regulate immune response. LV305 and CMB305 may help stimulate the immune system. Giving modified T cells, chemotherapy, aldesleukin, LV305, and CMB305 may work better in treating participants with sarcoma.

TERMINATED
Genetically Engineered PBMC and PBSC Expressing NY-ESO-1 TCR After a Myeloablative Conditioning Regimen to Treat Patients With Advanced Cancer
Description

This phase I clinical trial evaluates the safety and feasibility of administering NY-ESO-1 TCR (T cell receptor)engineered peripheral blood mononuclear cells (PBMC) and peripheral blood stem cells (PBSC) after a myeloablative conditioning regimen to treat patients with cancer that has spread to other parts of the body. The conditioning chemotherapy makes room in the patient?s bone marrow for new blood cells (PBMC) and blood-forming cells (stem cells) to grow. Giving NY-ESO-1 TCR PBMC and stem cells after the conditioning chemotherapy is intended to replace the immune system with new immune cells that have been redirected to attack and kill the cancer cells and thereby improve immune system function against cancer.

COMPLETED
T-Cell Infusion, Aldesleukin, and Utomilumab in Treating Patients With Recurrent Ovarian Cancer
Description

This phase I/Ib trial studies the side effects and best dose of utomilumab and how well it works with CD8-positive T-lymphocyte (T-cell infusion) and aldesleukin in treating patients with ovarian cancer that has come back. Aldesleukin may stimulate white blood cells to kill ovarian cancer cells. Giving white blood cells (T-cells) that have been activated by a vaccine with aldesleukin may kill more tumor cells. Immunotherapy with utomilumab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Giving T-cell infusion with aldesleukin and utomilumab may work better in treating patients with ovarian cancer.

TERMINATED
Laboratory-Treated (Central Memory/Naive) CD8+ T Cells in Treating Patients With Newly Diagnosed or Relapsed Acute Myeloid Leukemia
Description

This phase I/II trial studies the side effects of laboratory-treated (central memory/naive) cluster of differentiation 8+ T cells (autologous Wilms tumor \[WT\]1-T cell receptor \[TCRc\]4 gene-transduced CD8-positive central memory T-cells \[TCM\]/naive T cells \[TN\] lymphocytes) and how well it works in treating patients with acute myeloid leukemia that is newly diagnosed or has come back. Genetically modified therapies, such as autologous WT1-TCRc4 gene-transduced CD8-positive TCM/TN lymphocytes, are taken from a patient's blood, modified in the laboratory so they specifically may kill cancer cells with a protein called WT1, and safely given back to the patient. The "genetically modified" T-cells have genes added in the laboratory to allow them to recognize leukemia cells that express WT1 and kill them.

TERMINATED
Genetically Modified T Cells in Treating Patients With Stage III-IV Non-small Cell Lung Cancer or Mesothelioma
Description

This phase I/II trial studies the side effects and best dose of genetically modified T cells in treating patients with stage III-IV non-small cell lung cancer (NSCLC) or mesothelioma. Many types of cancer cells, including NSCLC and mesothelioma, but not most normal cells, have a protein called Wilms tumor (WT)1 on their surfaces. This study takes a type of immune cell from patients, called T cells, and modifies their genes in the laboratory so that they are programmed to find cells with WT1 and kill them. The T cells are then given back to the patient. Cyclophosphamide and aldesleukin may also stimulate the immune system to attack cancer cells. Giving cyclophosphamide and aldesleukin with laboratory-treated T cells may help the body build an immune response to kill tumor cells.

COMPLETED
Vaccine Therapy in Reducing the Frequency of Cytomegalovirus Events in Patients With Hematologic Malignancies Undergoing Donor Stem Cell Transplant
Description

This randomized phase II trial studies how well vaccine therapy works in reducing the frequency of cytomegalovirus severe infections (events) in patients with hematologic malignancies undergoing donor stem cell transplant. Vaccines made from a peptide may help the body build an effective immune response and may reduce cytomegalovirus events after donor stem cell transplant.

TERMINATED
Laboratory-Treated T Cells in Treating Patients With High-Risk Relapsed Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia Previously Treated With Donor Stem Cell Transplant
Description

This phase I/II trial studies the side effects of laboratory-treated T cells and to see how well they work in treating patients with high-risk acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), or chronic myelogenous leukemia (CML) that has returned after a period of improvement (relapsed), previously treated with donor stem cell transplant. Biological therapies, such as cellular adoptive immunotherapy, may stimulate the immune system in different ways and stop cancer cells from growing. Placing a gene that has been created in the laboratory into a person's T cells may make the body build an immune response to kill cancer cells.