Treatment Trials

11 Clinical Trials for Various Conditions

Focus your search

COMPLETED
A Longitudinal Study of Hermansky-Pudlak Syndrome Pulmonary Fibrosis
Description

Hermansky-Pudlak Syndrome (HPS) is a rare genetic disease that is associated with oculocutaneous albinism, bleeding, granulomatous colitis, and pulmonary fibrosis in some subtypes, including HPS-1, HPS-2, and HPS-4. Pulmonary fibrosis causes shortness of breath and progressive decline in lung function. In HPS patients with at-risk subtypes, almost all adults eventually develop fatal pulmonary fibrosis unless they undergo lung transplantation. The purpose of this study is to identify the earliest measurable pulmonary disease activity in individuals at-risk for HPS pulmonary fibrosis. The study also aims to develop biomarkers that will aid in understanding of the causes of HPS pulmonary fibrosis and facilitate more rapid conduct of therapeutic trials in HPS patients with mild pulmonary disease in the future.

WITHDRAWN
Medical Treatment of Colitis in Patients With Hermansky-Pudlak Syndrome
Description

This study will determine if medical treatment of colitis (inflammation of the colon resulting in loose bowel movements, rectal bleeding, and belly pain) that is used for other colitis conditions, such as Crohn's disease and ulcerative colitis, is safe and effective for treating colitis in patients with Hermansky-Pudlak syndrome (HPS). HPS is a hereditary disorder that causes albinism, visual impairment, and abnormal bleeding. Some patients also develop colitis, pulmonary fibrosis, and kidney disease. Patients with HPS and colitis who are 18 years of age or older may be eligible for this study. Participants receive treatment for their colitis symptoms with one or more of several study drugs, which include mesalamine (5-ASA), corticosteroids, infliximab and 6-mercaptopurine, adalimumab and tacrolimus. The drugs are added to the treatment plan one at a time to find the combination that works best for the individual patient. Patients who respond to one or more of the medications may continue treatment with that same combination for up to 6 months. Regular clinic visits are scheduled for blood tests, symptoms ratings questionnaires and periodic physical examinations and colonoscopies to measure the response to treatment and evaluate any side effects.

TERMINATED
Pilot Study of a Multi-Drug Regimen for Severe Pulmonary Fibrosis in Hermansky-Pudlak Syndrome
Description

This study will examine whether five drugs (pravastatin, Losartan, Zileuton, N-acetylcysteine and erythromycin) used together can slow the course of pulmonary fibrosis (scarring of the lung tissue) in patients with Hermansky-Pudlak Syndrome (HPS). Patients with this disease have decreased skin color (albinism), bleeding problems, and sometimes colon problems. Two of the known types of Hermansky Pudlak syndrome, type 1 and type 4, are at high risk of pulmonary fibrosis between the ages of 30 and 50. Patients 18 to 70 years of age who have Hermansky-Pudlak Syndrome with a serious loss of lung function due to pulmonary fibrosis may be eligible for this study. Participants begin taking pravastatin on study day 2 and start a new drug every 3 days. Patients who experience no problems with the medicines return home and continue on the drugs for the next 2 years. They return to the NIH Clinical Center every 3 months for a medical history, physical examination, and blood, urine and lung function tests. CT and bone density scans are done every year. The study may continue for up to 3 years.

COMPLETED
Oral Pirfenidone for the Pulmonary Fibrosis of Hermansky-Pudlak Syndrome
Description

Hermansky-Pudlak Syndrome (HPS) is an inherited disease that results in decreased pigmentation (oculocutaneous albinism), bleeding problems due to a platelet abnormality (platelet storage pool defect), and storage of an abnormal fat-protein compound (lysosomal accumulation of ceroid lipofuscin). The disease can cause poor functioning of the lungs, intestine, kidneys, or heart. The most serious complication of the disease is pulmonary fibrosis and typically causes death in patients 40 - 50 years old. The disorder is common in Puerto Rico, where many of the clinical research studies on the disease have been conducted. Neither the full extent of the disease nor the basic cause of the disease is known. There is no known treatment for HPS. The drug pirfenidone blocks the biochemical process of inflammation and has been reported to slow or reverse pulmonary fibrosis in animal systems. In this study researchers will select up to 40 HPS patients diagnosed with pulmonary fibrosis. The patients will be randomly divided into 2 groups. The patients will not know if they are taking pirfenidone or a placebo "sugar pill". 1. Group one will be patients who will receive pirfenidone. 2. Group two will be patients who will receive a placebo "sugar pill" The major outcome measurement of the therapy will be a change in the lung function (forced vital capacity). The study will be stopped if one therapy proves to be more effective than the other.

RECRUITING
Clinical and Basic Investigations Into Hermansky-Pudlak Syndrome
Description

Hermansky-Pudlak Syndrome (HPS) is an inherited disease which results in decreased pigmentation (oculocutaneous albinism), bleeding problems due to a platelet abnormality (platelet storage pool defect), and storage of an abnormal fat-protein compound (lysosomal accumulation of ceroid lipofuscin). The disease can cause poor functioning of the lungs, intestine, kidneys, or heart. The major complication of the disease is pulmonary fibrosis and typically causes death in patients ages 40 - 50 years old. The disorder is common in Puerto Rico, where many of the clinical research studies on the disease have been conducted. Neither the full extent of the disease nor the basic cause of the disease is known. There is no known treatment for HPS. The purpose of this study is to perform research into the medical complications of HPS and begin to understand what causes these complications. Researchers will clinically evaluate patients with HPS of all ethnic backgrounds. They will obtain cells, blood components (plasma), and urine for future studies. Genetic tests (mutation analysis) to detect HPS-causing genes will also be conducted.\<TAB\>...

UNKNOWN
Efficacy and Safety of Pirfenidone Treatment in HPS-ILD
Description

This research study will explore the safety and efficacy of the drug, pirfenidone, in patients with a diagnosis of Hermansky-Pudlak Syndrome (HPS) who have an associated interstitial lung disease (ILD) over a planned period of 56 weeks.

ENROLLING_BY_INVITATION
Early Check: Expanded Screening in Newborns
Description

Early Check provides voluntary screening of newborns for a selected panel of conditions. The study has three main objectives: 1) develop and implement an approach to identify affected infants, 2) address the impact on infants and families who screen positive, and 3) evaluate the Early Check program. The Early Check screening will lead to earlier identification of newborns with rare health conditions in addition to providing important data on the implementation of this model program. Early diagnosis may result in health and development benefits for the newborns. Infants who have newborn screening in North Carolina will be eligible to participate, equating to over 120,000 eligible infants a year. Over 95% of participants are expected to screen negative. Newborns who screen positive and their parents are invited to additional research activities and services. Parents can enroll eligible newborns on the Early Check electronic Research Portal. Screening tests are conducted on residual blood from existing newborn screening dried blood spots. Confirmatory testing is provided free-of-charge for infants who screen positive, and carrier testing is provided to mothers of infants with fragile X. Affected newborns have a physical and developmental evaluation. Their parents have genetic counseling and are invited to participate in surveys and interviews. Ongoing evaluation of the program includes additional parent interviews.

Conditions
Spinal Muscular AtrophyFragile X SyndromeFragile X - PremutationDuchenne Muscular DystrophyHyperinsulinemic Hypoglycemia, Familial 1Diabetes MellitusAdrenoleukodystrophy, NeonatalMedium-chain Acyl-CoA Dehydrogenase DeficiencyVery Long Chain Acyl Coa Dehydrogenase DeficiencyBeta-ketothiolase DeficiencySevere Combined Immunodeficiency Due to Adenosine Deaminase DeficiencyPrimary Hyperoxaluria Type 1Congenital Bile Acid Synthesis Defect Type 2Pyridoxine-Dependent EpilepsyHereditary Fructose IntoleranceHypophosphatasiaHyperargininemiaMucopolysaccharidosis Type 6Argininosuccinic AciduriaCitrullinemia, Type IWilson DiseaseMaple Syrup Urine Disease, Type 1AMaple Syrup Urine Disease, Type 1BBiotinidase DeficiencyNeonatal Severe Primary HyperparathyroidismIntrinsic Factor DeficiencyUsher Syndrome Type 1D/F Digenic (Diagnosis)Cystic FibrosisStickler Syndrome Type 2Stickler Syndrome Type 1Alport Syndrome, Autosomal RecessiveAlport Syndrome, X-LinkedCarbamoyl Phosphate Synthetase I Deficiency DiseaseCarnitine Palmitoyl Transferase 1A DeficiencyCarnitine Palmitoyltransferase II DeficiencyCystinosisChronic Granulomatous DiseaseCerebrotendinous XanthomatosesMaple Syrup Urine Disease, Type 2Severe Combined Immunodeficiency Due to DCLRE1C DeficiencyThyroid Dyshormonogenesis 6Thyroid Dyshormonogenesis 5Supravalvar Aortic StenosisFactor X DeficiencyHemophilia AHemophilia BTyrosinemia, Type IFructose 1,6 Bisphosphatase DeficiencyGlycogen Storage Disease Type IG6PD DeficiencyGlycogen Storage Disease IIGalactokinase DeficiencyMucopolysaccharidosis Type IV AGalactosemiasGuanidinoacetate Methyltransferase DeficiencyAgat DeficiencyGlutaryl-CoA Dehydrogenase DeficiencyGtp Cyclohydrolase I DeficiencyHyperinsulinism-Hyperammonemia SyndromePrimary Hyperoxaluria Type 23-Hydroxyacyl-CoA Dehydrogenase DeficiencyLong-chain 3-hydroxyacyl-CoA Dehydrogenase DeficiencyMitochondrial Trifunctional Protein DeficiencySickle Cell DiseaseBeta-ThalassemiaHolocarboxylase Synthetase Deficiency3-Hydroxy-3-Methylglutaric AciduriaPrimary Hyperoxaluria Type 3Hermansky-Pudlak Syndrome 1Hermansky-Pudlak Syndrome 4Apparent Mineralocorticoid ExcessHSDBCBAS1Mucopolysaccharidosis Type 2Mucopolysaccharidosis Type 1Severe Combined Immunodeficiency, X LinkedSevere Combined Immunodeficiency Due to IL-7Ralpha DeficiencyDiabetes Mellitus, Permanent NeonatalIsovaleric AcidemiaSevere Combined Immunodeficiency T-Cell Negative B-Cell Positive Due to Janus Kinase-3 Deficiency (Disorder)Jervell and Lange-Nielsen Syndrome 2Hyperinsulinemic Hypoglycemia, Familial, 2Diabetes Mellitus, Permanent Neonatal, With Neurologic FeaturesJervell and Lange-Nielsen Syndrome 1Lysosomal Acid Lipase DeficiencyCblF3-Methylcrotonyl CoA Carboxylase 1 Deficiency3-Methylcrotonyl CoA Carboxylase 2 DeficiencyWaardenburg Syndrome Type 2AMethylmalonic Aciduria cblA TypeMethylmalonic Aciduria cblB TypeMethylmalonic Aciduria and Homocystinuria Type cblCMAHCDMethylmalonic Aciduria Due to Methylmalonyl-CoA Mutase DeficiencyCongenital Disorder of Glycosylation Type 1BMthfr DeficiencyMethylcobalamin Deficiency Type Cbl G (Disorder)Methylcobalamin Deficiency Type cblEUsher Syndrome, Type 1BN-acetylglutamate Synthase DeficiencyOrnithine Transcarbamylase DeficiencyPhenylketonuriasWaardenburg Syndrome Type 1Congenital HypothyroidismPropionic AcidemiaUsher Syndrome, Type 1FPancreatic Agenesis 1Hereditary Hypophosphatemic RicketsGlycogen Storage Disease IXBGlycogen Storage Disease IXCMOWSEpilepsy, Early-Onset, Vitamin B6-DependentPyridoxal Phosphate-Responsive SeizuresPituitary Hormone Deficiency, Combined, 1PtsdDihydropteridine Reductase DeficiencySevere Combined Immunodeficiency Due to RAG1 DeficiencySevere Combined Immunodeficiency Due to RAG2 DeficiencyRetinoblastomaMultiple Endocrine Neoplasia Type 2BPseudohypoaldosteronism, Type ILiddle SyndromeBiotin-Responsive Basal Ganglia DiseaseSCDDIAR1GSD1CAcrodermatitis EnteropathicaThyroid Dyshormonogenesis 1Riboflavin Transporter DeficiencyWaardenburg Syndrome, Type 2ESRDCongenital Lipoid Adrenal Hyperplasia Due to STAR DeficiencyBarth SyndromeAdrenocorticotropic Hormone DeficiencyTranscobalamin II DeficiencyThyroid Dyshormonogenesis 3Segawa Syndrome, Autosomal RecessiveAutosomal Recessive Nonsyndromic Hearing LossThyroid Dyshormonogenesis 2ACongenital Isolated Thyroid Stimulating Hormone DeficiencyHypothyroidism Due to TSH Receptor MutationsUsher Syndrome Type 1CUsher Syndrome Type 1G (Diagnosis)Von Willebrand Disease, Type 3Combined Immunodeficiency Due to ZAP70 DeficiencyAdenine Phosphoribosyltransferase DeficiencyMetachromatic LeukodystrophyCanavan DiseaseMenkes DiseaseCarbonic Anhydrase VA DeficiencyDevelopmental and Epileptic Encephalopathy 217 Alpha-Hydroxylase DeficiencySmith-Lemli-Opitz SyndromeKrabbe DiseaseGlutathione Synthetase DeficiencyMucopolysaccharidosis Type 7Rett SyndromeMolybdenum Cofactor Deficiency, Type ANiemann-Pick Disease, Type C1Niemann-Pick Disease Type C2Ornithine Aminotransferase Deficiency3-Phosphoglycerate Dehydrogenase DeficiencyLeber Congenital Amaurosis 2Dravet SyndromeMucopolysaccharidosis Type 3 AOrnithine Translocase DeficiencyCarnitine-acylcarnitine Translocase DeficiencyGlucose Transporter Type 1 Deficiency SyndromeCreatine Transporter DeficiencyNiemann-Pick Disease Type APitt Hopkins SyndromeTuberous Sclerosis 1Tuberous Sclerosis 2Ataxia With Isolated Vitamin E DeficiencyAngelman SyndromePrader-Willi SyndromeHomocystinuriaPermanent Neonatal Diabetes MellitusTransient Neonatal Diabetes MellitusFactor VII DeficiencyGlycogen Storage Disease Type IXA1Glycogen Storage Disease, Type IXA2Glycogen Storage Disease ICGlycogen Storage Disease Type IBCentral Hypoventilation Syndrome With or Without Hirschsprung Disease
COMPLETED
Clinical and Pathophysiological Investigations Into Erdheim Chester Disease
Description

Background: - Erdheim Chester Disease (ECD) is a very rare disease in which abnormal white blood cells start growing and affect the bones, kidneys, skin, and brain. ECD can cause severe lung disease, kidney failure, heart disease, and other complications that lead to death. Because ECD is a rare disease, found mostly in men over 40 years of age, there is no standard treatment for it. More information is needed to find out what genes can cause ECD and how best to treat it. Objectives: - To collect study samples and medical information on people with Erdheim Chester Disease. Eligibility: - Individuals 2 to 80 year of age who have been diagnosed with Erdheim Chester Disease. Design: * Participants will be screened with a physical exam and medical history. * Participants will have a study visit to provide samples for study, including blood, urine, and skin tissue samples. Participants will also have lung, heart, and muscle function tests; imaging studies of the brain, chest, and whole body; a treadmill running stress test; an eye exam; and other tests as needed by the study doctors. * Participants will be asked to return for a similar set of tests every 2 years, and to remain in contact for possible treatment options.

ACTIVE_NOT_RECRUITING
Analysis of Specimens From Individuals With Pulmonary Fibrosis
Description

The etiology of pulmonary fibrosis is unknown. Analyses of blood, genomic DNA, and specimens procured by bronchoscopy, lung biopsy, lung transplantation, clinically-indicated extra-pulmonary biopsies, or post-mortem examination from individuals with this disorder may contribute to our understanding of the pathogenic mechanisms of pulmonary fibrosis. The purpose of this protocol is to procure and analyze blood, genomic DNA, and specimens by bronchoscopy, lung biopsy, lung transplantation, extra-pulmonary biopsies, or post-mortem examination from subjects with pulmonary fibrosis. In addition, blood, genomic DNA, clinically-indicated extra-pulmonary biopsies, as well as bronchoscopy and post-mortem examination specimens may be procured and analyzed from relatives of subjects with hereditary forms of pulmonary fibrosis; blood, genomic DNA, and bronchoscopy specimens may be procured from healthy research volunteers....

COMPLETED
23andMe IPF Research Study
Description

The long term goal of this study is to increase genetic understanding of IPF to enable the development of an effective drug for IPF that can improve the lives of those living with the condition.

COMPLETED
Study of Megakaryocytes From Patients With Abnormal Platelet Vesicles
Description

Congenital bleeding disorders characterized by abnormal platelet granules include Gray Platelet syndrome (GPS; defective alpha-granules), Hermansky-Pudlak syndrome (HPS; defective delta-granules), and combined alpha delta-storage pool deficiency (alpha delta-SPD). Other diseases associated with variable defects in platelet gamma-granules include Chediak-Higashi, Griscelli, Wiskott-Aldrich, and Thrombocytopenia Absent Radius syndromes. These disorders are models for the study of organelle formation in megakaryocytes and platelets. Characteristics of megakaryocytopoiesis in these disorders have not been investigated because megakaryocytes could not be cultured from patients in sufficient quantities for experimental purposes. Recent advances have made it possible to culture megakaryocytes using serum-free media supplemented with recombinant human thrombopoietin (TPO). Such cultured human megakaryocytes, amplified from bone marrow-derived CD34+ stem cells, synthesize and store organellar proteins and produce functional platelets. In this protocol, we plan to obtain bone marrow aspirates from 40 children and adults (ages 2 to 80 years) with GPS, HPS, and related disorders. Patients admitted to the NIH Clinical Center on specific disease-related protocols will be enrolled in this protocol during their routine 3-5 day visits. We will culture megakaryocytes from CD34+ stem cells isolated from bone marrow aspirates. Studies of cultured megakaryocytes will include evaluation of granule membrane and soluble proteins using fluorescent antibodies and immunoelectron microscopy and comparison of RNA and protein expression patterns between normal and patient cells. Precautions will be taken to prevent the primary risk of the bone marrow aspiration, i.e., prolonged bleeding at the aspiration site. Standard diagnostic studies on the bone marrow sample may reveal information that may directly benefit patients. However, the broader benefit of this study is the acquisition of a better understanding of the characteristics of functional platelet disorders and the process of intracellular vesicle formation.