35 Clinical Trials for Various Conditions
This phase II trial studies how well giving an umbilical cord blood transplant together with cyclophosphamide, fludarabine, and total-body irradiation (TBI) works in treating patients with hematologic diseases. Giving chemotherapy, such as cyclophosphamide, fludarabine and thiotepa, and TBI before a donor cord blood transplant (CBT) helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after transplant may stop this from happening in patients with high-risk hematologic diseases.
This is a study to evaluate the safety and efficacy of Miltenyi CliniMACS® CD34 Reagent System to promote engraftment of haploidentical CD34+ selected cells combined with single unit umbilical cord blood transplant for treatment of high-risk hematologic disorders.
This is a Phase II study for the use of T-cell replete reduced intensity conditioning (RIC) haploidentical donor allogeneic hematopoietic cell transplantation (HaploHCT) for individuals with high-risk non-malignant diseases who lack a suitable HLA-matched sibling donor.
RATIONALE: Giving chemotherapy, such as fludarabine and cyclophosphamide, and total-body irradiation before a donor umbilical cord blood stem cell transplant helps stop the growth of cancer or abnormal cells and prepares the patient's bone marrow for the stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect). Giving an infusion of the donor's T-regulatory cells before the transplant may help increase this effect. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase I trial is studying the side effects and best dose of umbilical cord blood T-regulatory cell infusion followed by donor umbilical cord blood transplant in treating patients with high-risk leukemia or other hematologic diseases.
RATIONALE: Giving chemotherapy, such as clofarabine, melphalan, and thiotepa, before a donor stem cell transplant helps stop the growth of cancer or abnormal cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil before the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects and best dose of clofarabine when given together with melphalan and thiotepa, followed by a donor stem cell transplant and to see how well it works in treating patients with high-risk and/or advanced hematologic cancer or other disease.
Background: People with blood cancers often receive blood or bone marrow transplants. But even with these treatments, the risk of relapse is high. Researchers want to see if giving the transplant recipient an infusion of lymphocytes (a type of white blood cell) from their transplant donor early after the transplant can reduce that risk. Objective: To learn if giving donor lymphocytes early after a transplant will help reduce the risk of relapse for people with certain blood cancers. Eligibility: Adults aged 18-65 with high-risk leukemia, lymphoma, myelodysplastic syndrome, or multiple myeloma that does not respond well to standard treatments and/or has a high risk of relapse. Healthy potential bone marrow and lymphocyte donor relatives aged 12 and older are also needed. Design: Participants will be screened with: Physical exam Blood and urine tests Spinal tap Eye exam Dental exam Heart and lung tests Imaging scans. A radioactive substance may be injected in their arm if a PET scan is needed. Bone marrow aspiration and biopsy Some screening tests will be repeated during the study. Participants will stay at the NIH hospital for about 4 weeks. They will receive a central venous catheter. They will get chemotherapy and other drugs starting 6 days before transplant. Then they will have their transplant. They will receive donor white blood cells 7 days later. They will give blood, bone marrow, urine, and stool samples for research. They must stay near NIH for at least 100 days after transplant. Participants will have periodic follow-up visits for 5 years. Healthy donors will have 2-3 visits. They will give blood, bone marrow, white blood cells, and stool samples for research. Participation will last for 5 years....
To characterize the safety and tolerability of 1) MBG453 as a single agent or in combination with PDR001 or 2) PDR001 and/or MBG453 in combination with decitabine or azacitidine in AML and intermediate or high- risk MDS patients, and to identify recommended doses for future studies.
Study CC-90002-AML-001 is an open-label, Phase 1 dose escalation (Part A) and expansion (Part B), clinical study of CC-90002, administered by intravenous (IV) infusion, in subjects with relapsed and/or primary refractory AML and high-risk MDS. The study will explore escalating doses of CC-90002 using a 3 + 3 dose escalation design in Part A, followed by dose expansion in Part B. The primary objective is to determine the safety and tolerability of CC-90002 and also to define the non-tolerated dose (NTD), the maximum tolerated dose (MTD) and/or the recommended Phase 2 dose (RP2D) of CC-90002.
This study is designed to compare progression-free survival (PFS) from randomization among patients randomized on the BMT CTN 1302 protocol, "Multicenter Phase II, Double-blind Placebo Controlled Trial of Maintenance Ixazomib after Allogeneic Hematopoietic Stem Cell Transplantation for High Risk Multiple Myeloma". It is hypothesized that Ixazomib maintenance therapy will result in improved PFS in patients with high-risk multiple myeloma following Allogeneic Hematopoietic Stem Cell Transplantation (HSCT) compared to placebo.
This is a study to collect the outcomes of stem cell transplantation for patients with hematologic diseases other than cancer.
This study will determine the safety and applicability of experimental forms of umbilical cord blood (UCB) transplantation for patients with high risk hematologic malignancies who might benefit from a hematopoietic stem cell transplant (HSCT) but who do not have a standard donor option (no available HLA-matched related donor (MRD), HLA-matched unrelated donor (MUD)), or single UCB unit with adequate cell number and HLA-match).
This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.
This is a randomized, double-blind, placebo-controlled, multicenter phase 3 trial to evaluate the efficacy and safety of brentuximab vedotin (SGN-35) and best supportive care (BSC) compared to placebo and BSC in treatment of residual Hodgkin lymphoma (HL) following autologous stem cell transplant (ASCT).
RATIONALE: Giving low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving a monoclonal antibody, such as alemtuzumab, before transplant and tacrolimus and methotrexate after transplant may stop this from happening. PURPOSE: This phase II trial is studying the side effects of donor stem cell transplant and to see how well it works in treating patients with high-risk hematologic cancer.
RATIONALE: A donor peripheral stem cell transplant helps stop the growth of cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of donor T cells may helps stop the patient's immune system from rejecting the donor's stem cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of donor T cells in treating patients with high-risk hematologic cancer who are undergoing donor peripheral blood stem cell transplant. Note: Only Phase I portion of study was performed. Due to slow accrual, study was closed before Phase II portion of study.
Allogeneic stem cell transplantation may provide long-term remissions for some patients with hematological malignancies. However, allogeneic transplantation is associated with a significant risk of potentially life threatening complications due to the effects of chemotherapy and radiation on the body and the risks of serious infection. In addition, patients may develop a condition called Graft versus host disease that arises from an inflammatory reaction of the donor cells against the recipient's normal tissues. The risk of graft versus host disease is somewhat increased in patients who are receiving a transplant from an unrelated donor. One approach to reduce the toxicity of allogeneic transplantation is a strategy call nonmyeloablative or "mini" transplants. In this approach, patients receive a lower dose of chemotherapy in an effort to limit treatment related side effects. Patients undergoing this kind of transplant remain at risk for graft versus host disease particularly if they receive a transplant from an unrelated donor. The purpose of this research study is to examine the ability of a drug called CAMPATH-1H to reduce the risk of graft versus host disease and make transplantation safer. CAMPATH-1H binds to and eliminates cells in the system such as T cells that can cause graft versus host disease (GvHD). As a result, earlier studies have shown that patients who receive CAMPATH-1H with an allogeneic transplant have a lower risk of GvHD. In the present study, we will examine the impact of treatment with CAMPATH-1H as part of an allogeneic transplant on the development of GvHD and infection. In addition, we will study the effects of CAMPATH-1H on the immune system by testing blood samples in the laboratory.
The purpose of this study is to determine the efficacy and safety of transplanting StemEx® in patients with certain hematological malignancies. For these patients, it is suggested that StemEx® can improve upon the outcome of transplanting a single, unmanipulated cord blood unit by significantly increasing the number of stem/progenitor cells available to the patient.
This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
RATIONALE: Umbilical cord blood transplantation may allow doctors to give higher doses of chemotherapy or radiation therapy and kill more cancer cells. PURPOSE: This phase II trial is studying allogeneic umbilical cord blood transplantation to see how well it works when given with chemotherapy or radiation therapy in treating patients with high-risk hematologic cancer.
The purpose of this study is to evaluate the impact of sequential overlapping treatment with PD-1 monoclonal antibody (mAb), pembrolizumab/MK-1375, followed by ibrutinib on endogenous immune function in previously untreated, high-risk CLL patients. Immune function will be evaluated through various laboratory correlative tests.
The goal of this clinical research study is to compare the effectiveness of receiving a combination of ondansetron and aprepitant to receiving ondansetron alone in helping to prevent nausea and/or vomiting in patients with Acute myeloid leukemia (AML) or high-risk (HR) Myelodysplastic syndromes (MDS) who are receiving cytarabine. The safety of this drug combination will also be studied.
Dose Escalation - Determine the maximum tolerated dose (MTD), if possible, or minimum optimal biologic dose (OBD), and evaluate the safety and tolerability of VIP943 in subjects with advanced CD123+ hematologic malignancies
Relapsed disease is the most common cause of death in children with hematological malignancies. Patients who fail high-intensity conventional chemotherapeutic regimens or relapse after stem cell transplantation have a poor prognosis. Toxicity from multiple therapies and elevated leukemic/tumor burden usually make these patients ineligible for the aggressive chemotherapy regimens required for conventional stem cell transplantation. Alternative options are needed. One type of treatment being explored is called haploidentical transplant. Conventional blood or bone marrow stem cell transplant involves destroying the patient's diseased marrow with radiation or chemotherapy. Healthy marrow from a donor is then infused into the patient where it migrates to the bone marrow space to begin generating new blood cells. The best type of donor is a sibling or unrelated donor with an identical immune system (HLA "match"). However, most patients do not have a matched sibling available and/or are unable to identify an acceptable unrelated donor through the registries in a timely manner. In addition, the aggressive treatment required to prepare the body for these types of transplants can be too toxic for these highly pretreated patients. Therefore doctors are investigating haploidentical transplant using stem cells from HLA partially matched family member donors. Although haploidentical transplant has proven curative in many patients, this procedure has been hindered by significant complications, primarily regimen-related toxicity including graft versus host disease (GVHD), and infection due to delayed immune reconstitution. These can, in part, be due to certain white blood cells in the graft called T cells. GVHD happens when the donor T cells recognize the patient's (the host) body tissues are different and attack these cells. Although too many T cells increase the possibility of GVHD, too few may cause the recipient's immune system to reconstitute slowly or the graft to fail to grow, leaving the patient at high-risk for infection. However, the presence of T cells in the graft may offer a positive effect called graft versus malignancy or GVM. With GVM, the donor T cells recognize the patient's malignant cells as diseased and, in turn, attack these diseased cells. For these reasons, a primary focus for researchers is to engineer the graft to provide a T cell depleted product to reduce the risk of GVHD, yet provide a sufficient number of cells to facilitate immune reconstitution, graft integrity and GVM. In this study, patients were given a haploidentical graft engineered to with specific T cell parameter values using the CliniMACS system. A reduced intensity, preparative regimen was used to reduce regimen-related toxicity and mortality. The primary goal of this study is to evaluate overall survival in those who receive this study treatment.
iSpecimen aims to create a clinical partner network of hospitals, laboratories, academic institutions, and other healthcare organizations ("institutions") capable of providing researchers and educators ("researchers") with annotated biospecimens for use in biomarker discovery and validation; diagnostic test and instrumentation development and validation; therapeutics development; other medical research including the impact that various specimen collection and handling methods and conditions have on research results; and in education such as researcher or physician training (collectively "research").
iSpecimen aims to create a clinical partner network of hospitals, laboratories, academic institutions, and other healthcare organizations ("institutions") capable of providing researchers and educators ("researchers") with annotated biospecimens for use in biomarker discovery and validation; diagnostic test and instrumentation development and validation; therapeutics development; other medical research including the impact that various specimen collection and handling methods and conditions have on research results; and in education such as researcher or physician training (collectively "research").
This is an open-label, two-part Phase 2 study investigating CGT9486 for the treatment of patients with Advanced Systemic Mastocytosis (AdvSM), including patients with Aggressive SM (ASM), SM with Associated Hematologic Neoplasm (SM-AHN), and Mast Cell Leukemia (MCL).
The purpose of this study is to investigate whether the combination of cyclophosphamide and abatacept versus the treatment used in standard of care will reduce the incidence of moderate and severe chronic graft-versus-host disease (GVHD) following hematopoietic stem cell transplantation. GVHD occurs when the cells from your donor (the graft) see your body's cells (the host) as different and attack them.
The goal of this clinical research study is to compare the effectiveness of 3 drug schedules in preventing chemotherapy-related nausea and/or vomiting in patients with acute myelogenous leukemia (AML) or high-risk myelodysplastic syndrome (MDS).
This study tests the clinical outcomes of one of two preparative regimens (determined by available donor source) in patients with non-malignant hemoglobinopathies. The researchers hypothesize that these regimens will have a positive effect on post transplant engraftment and the incidence of graft-versus-host-disease. Regimen A2 has replaced Regimen A in this study. Two patients were treated on Regimen A but did not have evidence of initial engraftment thus triggering the stopping rule for that arm of this study.
Background: * Individuals may be prone to develop blood or lymph node cancers (leukemia or lymphoma) for a variety of reasons, including genetic predisposition to these cancers, environmental exposures or other medical conditions. * Studies of people and families at high risk of cancer often lead to clues about their cause that may also be important regarding the sporadic occurrence of these cancers in the general population. * Identifying genetic or environmental factors that play a role in the development of these diseases may be important in developing prevention trials, screening programs and treatments. Objectives: * Describe the cancers and other conditions in families with blood or lymph node cancer. * Find and describe genes that may cause blood and lymph node cancer, and understand how they work in families. * Use laboratory methods to try to determine if it is possible to identify who is at highest risk of blood or lymph node cancer. * Test how genes act with other factors to alter the risk of disease, its severity or its manifestations in families. Eligibility: * Individuals of any age with a personal or family history of a blood or lymph node cancer. * Individuals with a personal or family history of medical conditions or environmental exposures that may predispose to blood or lymph node cancer. Design: * Participants complete questionnaires about their personal and family medical history and provide consent for researchers to review their medical records and pathology materials related to their care and those of deceased relatives with blood or lymph node cancer, tumors, or other related illnesses for whom they are the legally authorized representative. * Participants donate a sample of blood or cheek cells, or a lock of hair for genetic studies. * Patients may also be evaluated at the NIH Clinical Center by one or more of the following specialists: cancer doctor or blood specialist, medical geneticist, research nurses or clinical social worker. They may have blood and urine tests and a cheek swab or mouth wash to collect cheek cells. Some patients may also be asked to have x-rays and routine imaging, such as CT scans or ultrasound tests, cell surface markers, skin biopsy, and, with special consents, bone marrow biopsy, MRI or PET scans, apheresis or fluorescein angiography and photography.