123 Clinical Trials for Various Conditions
There are no strategies developed post-stem cell transplant (SCT) for patients who receive allogenic SCT with a significant amount of blasts prior SCT. Novel strategies to treat relapsed AML/MDS and to reduce the incidence of relapse after allogeneic SCT are needed. This study is being done in patients with high-risk MDS or AML who undergo an allogeneic SCT. The study will have two arms, participants who receive an HLA-matched unrelated donor SCT (Arm A) or HLA- haploidentical SCT (Arm B). Following myeloablative conditioning (MAC), GVHD prophylaxis with post-transplantation cyclophosphamide (PTCy), tacrolimus and mycophenolate mofetil will be given per standard of care. At 40-60 days post SCT, If the patient has not had any evidence of Grade II-IV acute graft-versus-host-disease (aGVHD), Nivolumab will be given intravenously every 2 weeks for 4 cycles of consolidation or treatment with Nivolumab. Dose-escalation of Nivolumab will follow the standard 3+3 design where a maximum of three dose levels will be evaluated, with a maximum of 18 patients treated with nivolumab per arm. As the maximum tolerated dose (MTD) of Nivolumab may differ between Arm A and Arm B, dose escalation of nivolumab in each arm will be followed separately following allogeneic SCT. Immunosuppression with tacrolimus will be continued during the cycles of PD-1 blockade to provide a moderate level of GVHD prophylaxis during consolidation or treatment with nivolumab.
The purpose of this trial is to examine the hematologic response rate of Exjade® in patients with AML and high risk MDS and chronic iron overload from blood transfusions. Deferasirox has been developed as an iron-chelating agent, and unlike deferoxamine, a previously developed iron chelator, deferasirox has the advantage of oral administration.
The goal of this study is to determine the safety and antitumor effects of REM-422, a MYB mRNA degrader, in people with Higher Risk MDS and relapsed/refractory AML
To characterize the safety and tolerability of 1) MBG453 as a single agent or in combination with PDR001 or 2) PDR001 and/or MBG453 in combination with decitabine or azacitidine in AML and intermediate or high- risk MDS patients, and to identify recommended doses for future studies.
This phase I/II trial studied the side effects and best dose of clofarabine when given together with cytarabine and to see how well they work in treating older patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndromes (MDS) that have relapsed or not responded to treatment.
In this study, MGCD0103, a new anticancer drug under investigation, is given three times per week to elderly patients with previously untreated acute myelogenous leukemia/high risk myelodysplastic syndrome or adults with relapsed/refractory disease.
This phase II trial studies how well cladribine, idarubicin, cytarabine, and venetoclax work in patients with acute myeloid leukemia, high-risk myelodysplastic syndrome, or blastic phase chronic myeloid leukemia. Drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.
This phase II clinical trial is studying how well giving busulfan, fludarabine phosphate, and anti-thymocyte globulin followed by donor stem cell transplant and azacitidine works in treating patients with high-risk myelodysplastic syndrome and older patients with acute myeloid leukemia. Giving low doses of chemotherapy, such as busulfan and fludarabine phosphate, before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-vs-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving anti-thymocyte globulin before transplant and giving azacitidine, tacrolimus, and methotrexate after the transplant may stop this from happening.
This study involves the use of an investigational cell therapy known as DVX201. DVX201 is an investigational cell therapy that contains a type of white blood cell called natural killer (NK) cells. NK cells are a normal part of your immune system and have a lifespan of only about two weeks. They are called natural killer cells because they have the natural ability to identify and kill cells in the body that are abnormal, like cancer cells or virally infected cells. But fighting cancer can also lead to exhaustion and abnormal function of NK cells. It can also result in a significant decrease in the number of NK cells in the blood, making it more difficult for the immune system to control the disease. We believe that infusion of healthy, functional NK cells into patients with AML or MDS may boost the immune system and help by killing cancer cells that remain after chemotherapy. DVX201 is an investigational NK cell therapy that may provide a rapid and temporary source of healthy NK cells that are better able to fight those cancer cells.
This phase II trial studies the effect of venetoclax together with busulfan, cladribine, and fludarabine in treating patients with high-risk acute myeloid leukemia or myelodysplastic syndrome who are undergoing stem cell transplant. Chemotherapy drugs, such as venetoclax, busulfan, cladribine, and fludarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding venetoclax to the current standard of care stem cell transplant regimen of busulfan, fludarabine, and cladribine may help to control high-risk acute myeloid leukemia or myelodysplastic syndrome.
The study seeks to compare time from formal search to hematopoietic cell transplantation (HCT) for patients 18 years and older, randomized between haplo-cord search and matched unrelated donor (MUD) search for patients with acute myeloid leukemia (AML) and high-risk myelodysplastic syndrome (MDS)
Targeted immune therapy with gemtuzumab ozogamicin (Mylotarg) in combination with chemotherapy followed by allogeneic stem cell transplantation will be given to patients with high risk acute myelogenous leukemia (AML) or myelodysplastic syndrome (MDS).
The goal of this clinical research study is to learn if the combination of vosaroxin and decitabine can help to control AML or MDS. The safety of these drugs will also be studied.
The addition of gemtuzumab ozogamicin (GO) in combination with Busulfan/Cyclophosphamide followed by AlloSCT in patients with high risk CD33+ AML/JMML/MDS will be safe and well tolerated. This study will attempt to determine the maximum tolerated dose of the immune therapy (gemtuzumab) when given in combination with the myeloablative (high dose) drugs used in this study for allogeneic stem cell transplant. (Part A)
RATIONALE: Drugs used in chemotherapy, such as VNP40101M and hydroxyurea, work in different ways to stop cancer cells from dividing so they stop growing or die. Hydroxyurea may help VNP40101M kill more cancer cells by making cancer cells more sensitive to the drug. PURPOSE: This phase II trial is studying how well giving VNP40101M with hydroxyurea works in treating patients with acute myelogenous leukemia or high-risk myelodysplasia.
This first-in-human study will evaluate RVU120 (SEL120), a novel small molecule CDK8/19 inhibitor, in patients with Acute Myeloid Leukemia (AML) or High-risk Myelodysplastic Syndrome (HR-MDS), in terms of selection of the recommended dose for further clinical development and assessment of safety, tolerability, preliminary anti-leukemic activity, as well as pharmacokinetic and pharmacodynamic profiles.
The purpose of this study is to determine whether lenalidomide can stop the growth of leukemia stem cells and can be used to prevent the return of leukemia cells after a transplant.
The purpose of this study is to evaluate the safety and preliminary activity of ARC-T cells and SPRX002 in participants with relapsed or refractory acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS)
This study is being done to evaluate the safety, tolerability and antitumor activity of oral CG-806 (luxeptinib) for the treatment of patients with Acute Myeloid Leukemia (except APML), secondary AML, therapy-related AML, or higher-risk MDS, whose disease has relapsed, is refractory or who are ineligible for or intolerant of intensive chemotherapy or transplantation.
This is a two Part study in patients with relapsed/refractory acute myeloid leukemia (AML), chronic myelomonocytic leukemia (CMML), or high risk myelodysplastic syndrome (MDS) that will initially evaluate the safety and tolerability of APG-115 as a single agent in Part 1, followed by a combination of APG-115 + 5-azacitidine (5-AZA) in Part 2.
This is a multicenter, open-label, Phase 1/2a dose escalation and expansion study of orally administered emavusertib (CA-4948) monotherapy in adult patients with AML or higher- risk Myelodysplastic Syndrome (hrMDS). Patients enrolling in the Phase 1 dose escalation of the study must meet one of the following criteria prior to consenting to the study: * Relapse/refractory (R/R) AML with FMS-like tyrosine kinase-3 (FLT3) mutations who have been previously treated with a FLT3 inhibitor * R/R AML with spliceosome mutations of splicing factor 3B subunit 1 (SF3B1) or U2AF1 * R/R hrMDS with spliceosome mutations of SF3B1 or U2 small nuclear RNA auxiliary factor 1 (U2AF1) * Number of pretreatments: 1 or 2 The Phase 2a Dose Expansion will be in 3 Cohorts of patients: 1. R/R AML with FLT3 mutations who have been previously treated with a FLT3 inhibitor; 2. R/R AML with spliceosome mutations of SF3B1 or U2AF1; and 3. R/R hrMDS (Revised International Prognostic Scoring System \[IPSS-R\] score \> 3.5) with spliceosome mutations of SF3B1 or U2AF1. All patients above have had ≤ 2 lines of prior systemic anticancer treatment. In previous versions of this protocol there was a Phase 1b portion of the study, in which patients with AML or hrMDS received CA-4948 in combination with venetoclax. This part of the study is no longer open for enrollment.
This was a phase 1b, multi-arm, open-label study of HDM201 in combination with MBG453 or venetoclax in subjects with AML or high-risk MDS. For all subjects, TP53wt status had to be characterized by, at a minimum, no mutations noted in exons 5, 6, 7 and 8. Two treatment arms enrolled subjects in parallel to characterize the safety, tolerability, PK, PD and preliminary antitumor activity of HDM201+MBG453 (treatment arm 1) and HDM201+venetoclax (treatment arm 2). * In the treatment arm 1, subjects received HDM201 in combination with MBG453. * In the treatment arm 2, subjects received HDM201 in combination with venetoclax. Venetoclax dose was gradually increased (ramp-up) over a period of 4 to 5 days to achieve the daily target dose tested that was subsequently continued. Upon the completion of the escalation part, MTD(s) and/or RD(s) of HDM201 in combination with MBG453 or venetoclax in AML and high-risk MDS subjects was planned to be determined for each treatment arm.
The primary objective of this study is to evaluate the efficacy of subcutaneous azacitidine in combination with durvalumab as compared with subcutaneous azacitidine alone in adults with previously untreated, higher risk MDS who are not eligible for HSCT or in adults ≥ 65 years old with previously untreated AML who are not eligible for HSCT, with intermediate or poor cytogenetic risk.
The goal of this clinical research study is to learn if ixazomib can prevent AML or MDS from coming back in patients who are in remission. The safety of this drug will also be studied.
The goal of this clinical research study is to learn if 5-azacitidine and sorafenib can help to control the disease in patients with Acute Myeloid Leukemia (AML) and high risk Myelodisplastic Syndrome (MDS) with FLT3-ITD mutation. The safety of this drug combination will also be studied.
This study will assess the safety and preliminary efficacy of escalating doses of LGH447 monotherapy in AML and MDS and LGH447 in combination with midostaurin in AML.
The goal of this clinical research study is to learn if cladribine given in combination with low-dose cytarabine (LDAC) and decitabine can help control the disease in patients with AML or MDS. The safety of this drug combination will also be studied. Cladribine is designed to interfere with the cell's ability to process DNA (the genetic material of cells). It can also insert itself into the DNA of cancer cells to stop them from growing and repairing themselves. Cytarabine is designed to insert itself into DNA of cancer cells to stop them from growing and repairing themselves. Decitabine is designed to damage the DNA of cells, which may cause cancer cells to die. This is an investigational study. Cladribine is FDA approved and commercially available for use in patients with hairy cell leukemia. Its use in patients with AML is investigational. Cytarabine is FDA approved and commercially available for use in patients with AML. Decitabine is FDA approved and commercially available for use in patients with MDS. Its use for patients with AML is investigational. Up to 160 patients will take part in this study. All will be enrolled at MD Anderson.
The goal of this clinical research study is to learn if omacetaxine given with cytarabine can help to control the disease in patients with AML or high-risk MDS. The safety of the study drugs will also be studied.
The goal of this clinical research study is to learn if the combination of Gleevec (imatinib mesylate) and low doses of Cytarabine (ara-C) may help to control leukemia while causing fewer side effects than standard high dose chemotherapy.
The purpose of this study is to find out how safe and effective the combination of Mylotarg in combination with cytarabine is in treating patients with Acute Myeloid Leukemia and advanced Myelodysplastic Syndrome over the age of 60 years.