106 Clinical Trials for Various Conditions
This phase Ib/II clinical trial tests the safety, side effects, and effectiveness of mosunetuzumab with chemotherapy for the treatment of patients with untreated, c-Myc rearrangement positive, high grade B cell lymphoma or diffuse large B cell lymphoma. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as mosunetuzumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as etoposide, doxorubicin, vincristine, cyclophosphamide and prednisone work in different ways to stop the growth of cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving mosunetuzumab with chemotherapy may be safe, tolerable and/or effective in treating patients with untreated, c-Myc rearrangement positive, high grade B cell lymphoma or diffuse large B cell lymphoma.
This phase I trial studies the safety and feasibility of cytomegalovirus (CMV) specific CD19-chimeric antigen receptor (CAR) T cells in combination with the CMV-modified vaccinia Ankara (MVA) triplex vaccine following lymphodepletion in treating patients with intermediate or high grade B-cell non-Hodgkin lymphoma (NHL) that has come back after a period of improvement (relapsed) or that does not respond to treatment (refectory). CAR T cells are a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added in the laboratory. The special receptor is called CAR. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion. Vaccines such as CMV-MVA triplex are made from gene-modified viruses and may help the body build an effective immune response to kill cancer cells. Giving CMV-specific CD19-CAR T-cells plus the CMV-MVA triplex vaccine may help prevent the cancer from coming back.
The primary objective of this study is to determine the recommended dosing regimen of loncastuximab tesirine in diffuse large B-cell lymphoma (DLBCL) or high-grade B-cell lymphoma (HGBCL) participants with moderate and severe hepatic impairment.
This phase I trial studies the safety and side effects of cytomegalovirus (CMV) specific CD19-chimeric antigen receptor (CAR) T-cells along with the CMV-modified vaccinia Ankara (MVA) triplex vaccine following a stem cell transplant in treating patients with high grade B-cell non-Hodgkin lymphoma. CAR T-cells are a type of treatment in which a patient's T-cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T-cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T-cells are grown in the laboratory and given to the patient by infusion. Vaccines such as CMV-MVA triplex are made from gene-modified viruses and may help the body build an effective immune response to kill cancer cells. Giving CMV-specific CD19-CAR T-cells plus the CMV-MVA triplex vaccine following a stem cell transplant may help prevent the cancer from coming back.
Background: Burkitt Lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) are aggressive B cell lymphomas. Frontline treatment does not always work. Researchers want to see if a combination of drugs can help. Objective: To learn if it is safe to give people with certain cancers copanlisib together with rituximab and combination chemotherapy dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (DA-EPOCH-R). Eligibility: People ages 18 and older with relapsed and/or refractory highly aggressive B-cell lymphomas such as BL and certain types of diffuse large B-cell lymphoma (DLBCL). Design: Participants will be screened with: Medical history Physical exam Bone marrow aspiration and biopsy. A needle will be put into their hipbone. Marrow will be removed. Imaging scans of the chest, abdomen, pelvis, and/or brain Tumor biopsy (if needed) Blood and urine tests Heart function tests Treatment will be given in 21-day cycles for up to 6 cycles. Participants will get copanlisib by intravenous (IV) infusion. They will also get a group of medicines called DA-EPOCH-R, as follows. They will get rituximab by IV infusion. Doxorubicin, etoposide, and vincristine will be mixed together in an IV bag and given by continuous IV infusion over 4 days. They will get cyclophosphamide by IV infusion. They will take prednisone by mouth. Participants will have frequent study visits. At these visits, they will repeat some screening tests. They may give tissue, saliva, and cheek swab samples. They will have at least one spinal tap. For this, a needle will be inserted into the spinal canal. Fluid will be removed. Participants will have a visit 30 days after treatment ends. They will have follow-up visits for at least 5 years.
This phase II/III trial tests whether it is possible to decrease the chance of high-grade B-cell lymphomas returning or getting worse by adding a new drug, venetoclax to the usual combination of drugs used for treatment. Venetoclax may stop the growth of cancer cells by blocking a protein called Bcl-2. Drugs used in usual chemotherapy, such as rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax together with usual chemotherapy may work better than usual chemotherapy alone in treating patients with high-grade B-cell lymphomas, and may increase the chance of cancer going into remission and not returning.
The purpose of this study is to test any good and bad effects of the study drug, CPI-613.
The purpose of this study is to evaluate the safety, tolerability and clinical activity of RO6870810 in combination with venetoclax and when co-administered with rituximab in participants with relapse/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and/or high-grade B-cell lymphoma with myelocytomatosis oncogene (MYC) and/or B-cell lymphoma 2 (BCL2) and/or B-cell lymphoma 6 (BCL6) gene rearrangements (HGBL-DH/TH).
This phase II trial studies how well rituximab, venetoclax, and bortezomib work in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as rituximab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Venetoclax and bortezomib may stop the growth of tumor cells by blocking some of the proteins needed for cell growth. Giving rituximab, venetoclax, and bortezomib may slow or stop the growth of cancer cells in patients with diffuse large B-cell lymphoma.
This first-in-human (FIH) trial is designed to assess the safety, feasibility and preliminary efficacy of a single intravenous (IV) dose of SynKIR-310 administered to participants with relapsed/refractory B-NHL.
The purpose of this research is to evaluate if study therapy, 19(T2)28z1xx TRAC-chimeric antigen receptor (CAR) T cells, may be an effective treatment for people with relapsed/refractory B-cell lymphoma. Researchers will also evaluate if this study therapy is safe, and to look for the highest dose that causes few or mild side effects in participants.
This research is being done to assess the effectiveness and safety of acalabrutinib combined with lisocabtagene maraleucel (liso-cel) for people with relapsed/refractory aggressive B-cell lymphoma. This research study involves the study drug acalabrutinib in combination with lisocabtagene maraleuce
This study is being done to find out how older patients respond to CAR-T cell therapy and how the treatment affects their quality of life. This is a quality of life study and participating in the study does not involve receiving any treatment, other than the standard treatment for participants' disease.
This phase II trial tests how well epcoritamab in combination with standard of care (SOC) platinum-based chemotherapy (rituximab, ifosfamide, carboplatin, etoposide \[RICE\], rituximab, cytarabine, dexamethasone, oxaliplatin or carboplatin RDHAP/X\] or gemcitabine and oxaliplatin \[Gem/Ox\]) and autologous hematopoietic cell transplant (HCT) works in treating patients with large B-cell lymphoma (LBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Epcoritamab, a type of bispecific T-cell engager, binds to a protein called CD3, which is found on T cells (a type of white blood cell). It also binds to a protein called CD20, which is found on B cells (another type of white blood cell) and some lymphoma cells. This may help the immune system kill cancer cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells and some types of cancer cells. This may help the immune system kill cancer cells. Chemotherapy drugs, such as ifosfamide, etoposide phosphate, cytarabine, and gemcitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. An autologous HCT is a procedure in which blood-forming stem cells (cells from which all blood cells develop) are removed, stored, and later given back to the same person. Giving epcoritamab in combination with SOC platinum-based chemotherapy, such as RICE, RDHAP/X and Gem/Ox, and autologous HCT may kill more cancer cells in patients with relapsed or refractory LBCL.
The researchers are doing this study to find out if the study treatment is an effective treatment that causes few or mild side effects in people with diffuse large B-cell lymphoma (DLBCL), high-grade B-cell lymphoma (HGBCL), or transformed lymphoma. The treatment being tested in this study is glofitamab, polatuzumab, and obinutuzumab in combination with standard treatment (the combination of rituximab, cyclophosphamide, doxorubicin, and prednisone, or R-miniCHP).
The purpose of this study is to find out how many people with B-cell lymphoma who are at high risk for central nervous system/CNS relapse test positive for cerebral spinal fluid/CSF ctDNA but test negative for CNS involvement using standard tests. The study will also look at how often CNS relapse happens in people with and without detected CSF ctDNA.
This research study involves assessing the impact of emapalumab as preventative management of CAR-T related cytokine release syndrome in participants with Non-Hodgkin's lymphoma (NHL). The research study involves the following study interventions: * Fludarabine and cyclophosphamide (Lymphodepleting Chemotherapy) * Axicabtagene Ciloleucel * Emapalumab
This is a Phase 1/2, first-in-human, open-label, dose-escalating trial designed to assess the safety and efficacy of VNX-101 in patients with relapsed or refractory CD19-positive hematologic malignancies.
This phase I trial tests the safety, side effects, and best dose of genetically engineered cells called EGFRt/19-28z/IL-12 CAR T cells, and to see how they work in treating patients with hematologic malignancies that makes a protein called CD19 (CD19-positive) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Chimeric Antigen Receptor (CAR) T-cell Therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. To improve the effectiveness of the modified T cells and to help the immune system fight cancer cells better, the modified T cells given in this study will include a gene that makes the T cells produce a cytokine (a molecule involved in signaling within the immune system) called interleukin-12 (IL-12). The researchers think that IL-12 may improve the effectiveness of the modified T cells, and it may also strengthen the immune system to fight cancer. Giving EGFRt/19-28z/IL-12 CAR T cells may be safe and tolerable in treating patients with relapsed or refractory CD19+ hematologic malignancies.
This research study involves the study of CD79b-19 CAR T cells for treating people with relapsed/refractory Non-Hodgkin Lymphoma and to understand the side effects when treated with CD79b-19 CAR T cells. This research study involves the study drugs: * CD79b-19 CAR T cells * Fludarabine and Cyclophosphamide: Standardly used chemotherapy drugs as part of lymphodepleting process
This phase I trial studies the side effects and best dose of mosunetuzumab when given together with polatuzumab vedotin and lenalidomide in treating patients with diffuse large B-cell lymphoma (DLBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Mosunetuzumab and polatuzumab vedotin are monoclonal antibodies that may interfere with the ability of cancer cells to grow and spread. Polatuzumab, linked to a toxic agent called vedotin, attaches to CD79B positive cancer cells in a targeted way and delivers vedotin to kill them. Lenalidomide may stimulate or suppress the immune system in different ways and stop cancer cells from growing and by preventing the growth of new blood vessels that cancer cells need to grow. Giving mosunetuzumab with polatuzumab vedotin and lenalidomide may work better in treating patients with relapsed/refractory DLBCL.
Phase 1 study comprised of open-label, dose escalation and expansion cohort study of P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed/refractory B cell malignancies
Participants are invited to take part in this research study because they have relapsed (cancer has come back) or refractory (cancer has not responded to treatment) B-cell Lymphoma and will be undergoing CAR T-cell Therapy. This research is being done to see if a new radiation therapy administration schedule will positively impact the logistics, time, cost, and side effects of radiation therapy. In this research study, participants will receive radiation therapy once weekly for 5 weeks. This is a novel administration schedule and we're looking to see how this schedule impacts side effects participants may experience, the time spent receiving radiation therapy, how much radiation therapy participants can receive, and how effective this new schedule is.
This phase 2 trial studies the side effects and best dose of tazemetostat and zanubrutinib in combination with tafasitamab and lenalidomide, and to see how well these combinations work in treating patients with large B-cell lymphoma that returned or did not respond to earlier treatment. Tazemetostat is in a class of medications called EZH2 inhibitors. It helps to stop the spread of cancer cells. Zanubrutinib is in a class of medications called kinase inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop the spread of cancer cells. tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The addition of tazemetostat or zanubrutinib to tafasitamab and lenalidomide may be able to shrink the cancer or extend the time without cancer symptoms coming back.
This phase II clinical trial evaluates tafasitamab and lenalidomide followed by tafasitamab and the carboplatin, etoposide and ifosfamide (ICE) regimen as salvage therapy for transplant eligible patients with large B-cell lymphoma that has come back (relapsed) or has not responded to treatment (refractory). Tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide may have antineoplastic activity which may help block the formation of growths that may become cancer. Drugs used in chemotherapy, such as carboplatin, etoposide and ifosfamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tafasitamab and lenalidomide followed by ICE may be a better treatment for patients with relapsed or refractory large B-cell lymphomas.
This phase I trial tests the safety, side effects, and best dose of tegavivint in treating patients with large b-cell lymphomas that has come back (relapsed) or does not respond to treatment (refractory). Tegavivint may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving tegavivint may help control the disease.
This phase II trial studies the safety and how well of loncastuximab tesirine when given together with mosunetuzumab works in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Loncastuximab tesirine is a monoclonal antibody, loncastuximab, linked to a toxic agent called tesirine. Loncastuximab attaches to anti-CD19 cancer cells in a targeted way and delivers tesirine to kill them. Mosunetuzumab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Giving loncastuximab tesirine with mosunetuzumab may help treat patients with relapsed or refractory diffuse large B-cell lymphoma.
This phase II trial evaluates whether loncastuximab tesirine and rituximab followed by dose-adjusted doxorubicin, etoposide, vincristine, cyclophosphamide, and prednisone works to treat patients with high risk diffuse large B-cell lymphoma. Loncastuximab tesirine is a monoclonal antibody called loncastuximab, linked to a drug called tesirine. It is a form of targeted therapy because it attaches to specific molecules (receptors) on the surface of cancer cells, known as CD19 receptors, and delivers tesirine to kill them. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Chemotherapy drugs such as doxorubicin, vincristine, and cyclophosphamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Etoposide is in a class of medications known as podophyllotoxin derivatives. It blocks a certain enzyme needed for cell division and DNA repair and may kill cancer cells. Prednisone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. Giving loncastuximab tesirine and rituximab in combination with dose-adjusted doxorubicin, etoposide, vincristine, cyclophosphamide, and prednisone may be more effective at treating high risk diffuse large B-cell lymphoma patients than standard treatments.
This phase II trial tests the safety, side effects, and best dose of TTI-621 (closed to enrollment) or TTI-622 in combination with pembrolizumab in treating patients with diffuse large B-cell lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). TTI-621 and TTI-622 are called fusion proteins. A fusion protein includes two specialized proteins that are joined together. In TTI-621 and TTI-622, one of the proteins binds with other proteins found on the surface of certain cells that are part of the immune system. The other protein targets and blocks a protein called CD47. CD47 is present on cancer cells and is used by those cells to hide from the body's immune system. By blocking CD47, TTI-621 and TTI-622 may help the immune system find and destroy cancer cells. Pembrolizumab is a monoclonal antibody directed against human cell surface receptor PD-1 (programmed death-1 or programmed cell death-1) that works by helping the body\'s immune system attack the cancer and may interfere with the ability of cancer cells to grow and spread. Giving TTI-621 (closed to enrollment) or TTI-622 in combination with pembrolizumab may kill more cancer cells in patients with relapsed or refractory diffuse large B-cell lymphoma.
This is a two-arm, open-label, phase Ib single-site study with expansion cohorts testing the addition of mosunetuzumab to intensive platinum-based salvage chemotherapy in patients with relapsed/refractory aggressive B cell lymphoma. The hypothesis of this study is that mosunetuzumab can be safely combined with platinum-based salvage chemotherapy in this patient population, and that this approach may outperform chemoimmunotherapy approaches that instead incorporate rituximab retreatment. The enrolling physician's choice of the chemotherapy backbone will determine a patient's assigned study arm (Arm A = DHAX, Arm B = ICE). The two arms will accrue patients to phase Ib independently.