Treatment Trials

110 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Mosunetuzumab With Chemotherapy for the Treatment of Patients With Untreated C-Myc Rearrangement Positive High Grade B Cell Lymphoma or Diffuse Large B Cell Lymphoma
Description

This phase Ib/II clinical trial tests the safety, side effects, and effectiveness of mosunetuzumab with chemotherapy for the treatment of patients with untreated, c-Myc rearrangement positive, high grade B cell lymphoma or diffuse large B cell lymphoma. A monoclonal antibody is a type of protein that can bind to certain targets in the body, such as molecules that cause the body to make an immune response (antigens). Immunotherapy with monoclonal antibodies, such as mosunetuzumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as etoposide, doxorubicin, vincristine, cyclophosphamide and prednisone work in different ways to stop the growth of cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving mosunetuzumab with chemotherapy may be safe, tolerable and/or effective in treating patients with untreated, c-Myc rearrangement positive, high grade B cell lymphoma or diffuse large B cell lymphoma.

RECRUITING
Genetically Modified T-cells (CMV-Specific CD19-CAR T-cells) Plus a Vaccine (CMV-MVA Triplex) for the Treatment of Intermediate or High Grade B-Cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the safety and feasibility of cytomegalovirus (CMV) specific CD19-chimeric antigen receptor (CAR) T cells in combination with the CMV-modified vaccinia Ankara (MVA) triplex vaccine following lymphodepletion in treating patients with intermediate or high grade B-cell non-Hodgkin lymphoma (NHL) that has come back after a period of improvement (relapsed) or that does not respond to treatment (refectory). CAR T cells are a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added in the laboratory. The special receptor is called CAR. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion. Vaccines such as CMV-MVA triplex are made from gene-modified viruses and may help the body build an effective immune response to kill cancer cells. Giving CMV-specific CD19-CAR T-cells plus the CMV-MVA triplex vaccine may help prevent the cancer from coming back.

RECRUITING
A Study to Evaluate the Pharmacokinetics and Safety of Loncastuximab Tesirine in Participants With Relapsed or Refractory Diffuse Large B-cell Lymphoma or High-grade B-cell Lymphoma With Hepatic Impairment (LOTIS-10)
Description

The primary objective of this study is to determine the recommended dosing regimen of loncastuximab tesirine in diffuse large B-cell lymphoma (DLBCL) or high-grade B-cell lymphoma (HGBCL) participants with moderate and severe hepatic impairment.

RECRUITING
Genetically Modified T-cells (CMV-Specific CD19-CAR T-cells) Plus a Vaccine (CMV-MVA Triplex) Following Stem Cell Transplantation for the Treatment of Intermediate or High Grade B-cell Non-Hodgkin Lymphoma
Description

This phase I trial studies the safety and side effects of cytomegalovirus (CMV) specific CD19-chimeric antigen receptor (CAR) T-cells along with the CMV-modified vaccinia Ankara (MVA) triplex vaccine following a stem cell transplant in treating patients with high grade B-cell non-Hodgkin lymphoma. CAR T-cells are a type of treatment in which a patient's T-cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T-cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T-cells are grown in the laboratory and given to the patient by infusion. Vaccines such as CMV-MVA triplex are made from gene-modified viruses and may help the body build an effective immune response to kill cancer cells. Giving CMV-specific CD19-CAR T-cells plus the CMV-MVA triplex vaccine following a stem cell transplant may help prevent the cancer from coming back.

TERMINATED
Copanlisib With Dose-Adjusted EPOCH-R in Relapsed and Refractory Burkitt Lymphoma and Other High-Grade B-cell Lymphomas
Description

Background: Burkitt Lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) are aggressive B cell lymphomas. Frontline treatment does not always work. Researchers want to see if a combination of drugs can help. Objective: To learn if it is safe to give people with certain cancers copanlisib together with rituximab and combination chemotherapy dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, doxorubicin, and rituximab (DA-EPOCH-R). Eligibility: People ages 18 and older with relapsed and/or refractory highly aggressive B-cell lymphomas such as BL and certain types of diffuse large B-cell lymphoma (DLBCL). Design: Participants will be screened with: Medical history Physical exam Bone marrow aspiration and biopsy. A needle will be put into their hipbone. Marrow will be removed. Imaging scans of the chest, abdomen, pelvis, and/or brain Tumor biopsy (if needed) Blood and urine tests Heart function tests Treatment will be given in 21-day cycles for up to 6 cycles. Participants will get copanlisib by intravenous (IV) infusion. They will also get a group of medicines called DA-EPOCH-R, as follows. They will get rituximab by IV infusion. Doxorubicin, etoposide, and vincristine will be mixed together in an IV bag and given by continuous IV infusion over 4 days. They will get cyclophosphamide by IV infusion. They will take prednisone by mouth. Participants will have frequent study visits. At these visits, they will repeat some screening tests. They may give tissue, saliva, and cheek swab samples. They will have at least one spinal tap. For this, a needle will be inserted into the spinal canal. Fluid will be removed. Participants will have a visit 30 days after treatment ends. They will have follow-up visits for at least 5 years.

ACTIVE_NOT_RECRUITING
Testing the Addition of a New Anti-cancer Drug, Venetoclax, to Usual Chemotherapy for High Grade B-cell Lymphomas
Description

This phase II/III trial tests whether it is possible to decrease the chance of high-grade B-cell lymphomas returning or getting worse by adding a new drug, venetoclax to the usual combination of drugs used for treatment. Venetoclax may stop the growth of cancer cells by blocking a protein called Bcl-2. Drugs used in usual chemotherapy, such as rituximab, cyclophosphamide, doxorubicin, vincristine, prednisone, and etoposide, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax together with usual chemotherapy may work better than usual chemotherapy alone in treating patients with high-grade B-cell lymphomas, and may increase the chance of cancer going into remission and not returning.

ACTIVE_NOT_RECRUITING
A Study of CPI-613 for Patients With Relapsed or Refractory Burkitt Lymphoma/Leukemia or High-Grade B-Cell Lymphoma With High-Risk Translocations
Description

The purpose of this study is to test any good and bad effects of the study drug, CPI-613.

COMPLETED
A Study to Evaluate Safety, Pharmacokinetics, and Clinical Activity of Combination of RO6870810 and Venetoclax, With or Without Rituximab, in Participants With Relapsed/Refractory DLBCL and/or High-Grade B-Cell Lymphoma and/or High Grade B-Cell Lymphoma With MYC and/or BCL2 and/or BCL6
Description

The purpose of this study is to evaluate the safety, tolerability and clinical activity of RO6870810 in combination with venetoclax and when co-administered with rituximab in participants with relapse/refractory (R/R) diffuse large B-cell lymphoma (DLBCL) and/or high-grade B-cell lymphoma with myelocytomatosis oncogene (MYC) and/or B-cell lymphoma 2 (BCL2) and/or B-cell lymphoma 6 (BCL6) gene rearrangements (HGBL-DH/TH).

WITHDRAWN
Rituximab, Venetoclax, and Bortezomib for the Treatment of Relapsed or Refractory Diffuse Large B-Cell Lymphoma
Description

This phase II trial studies how well rituximab, venetoclax, and bortezomib work in treating patients with diffuse large B-cell lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Immunotherapy with monoclonal antibodies, such as rituximab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Venetoclax and bortezomib may stop the growth of tumor cells by blocking some of the proteins needed for cell growth. Giving rituximab, venetoclax, and bortezomib may slow or stop the growth of cancer cells in patients with diffuse large B-cell lymphoma.

NOT_YET_RECRUITING
Epcoritamab Plus Standard of Care Platinum-Based Chemotherapy and Autologous Hematopoietic Cell Transplant for the Treatment of Relapsed or Refractory Large B-cell Lymphoma
Description

This phase II trial tests how well epcoritamab in combination with standard of care (SOC) platinum-based chemotherapy (rituximab, ifosfamide, carboplatin, etoposide \[RICE\], rituximab, cytarabine, dexamethasone, oxaliplatin or carboplatin RDHAP/X\] or gemcitabine and oxaliplatin \[Gem/Ox\]) and autologous hematopoietic cell transplant (HCT) works in treating patients with large B-cell lymphoma (LBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Epcoritamab, a type of bispecific T-cell engager, binds to a protein called CD3, which is found on T cells (a type of white blood cell). It also binds to a protein called CD20, which is found on B cells (another type of white blood cell) and some lymphoma cells. This may help the immune system kill cancer cells. Carboplatin is in a class of medications known as platinum-containing compounds. It works in a way similar to the anticancer drug cisplatin, but may be better tolerated than cisplatin. Carboplatin works by killing, stopping or slowing the growth of cancer cells. Oxaliplatin is in a class of medications called platinum-containing antineoplastic agents. It damages the cell's deoxyribonucleic acid (DNA) and may kill cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells and some types of cancer cells. This may help the immune system kill cancer cells. Chemotherapy drugs, such as ifosfamide, etoposide phosphate, cytarabine, and gemcitabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response to help lessen the side effects of chemotherapy drugs. An autologous HCT is a procedure in which blood-forming stem cells (cells from which all blood cells develop) are removed, stored, and later given back to the same person. Giving epcoritamab in combination with SOC platinum-based chemotherapy, such as RICE, RDHAP/X and Gem/Ox, and autologous HCT may kill more cancer cells in patients with relapsed or refractory LBCL.

RECRUITING
Golcadomide and Rituximab as Bridging Therapy for Relapsed or Refractory Aggressive B-cell Non-Hodgkin Lymphoma Before CAR T-cell Therapy
Description

This phase II trial tests the effectiveness of golcadomide and rituximab as bridging treatment before chimeric antigen receptor (CAR) T-cell therapy in patients with aggressive B-cell non-Hodgkin lymphoma that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Patients that are able to receive CAR T-cell therapy have a potential for cure, however, many will not be qualified to receive therapy due to relapse. Bridging therapy is therapy intended to transition a patient from one therapy or medication to another or maintain their health or status until they are a candidate for a therapy or have decided on a therapy. Golcadomide may help block the formation, growth or spread of cancer cells. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving golcadomide and rituximab as bridging therapy before CAR T-cell therapy may kill more tumor cells and may improve the chance of proceeding to CAR T-cell therapy in patients with relapsed or refractory aggressive B-cell non-Hodgkin lymphoma.

Conditions
Large B-Cell Lymphoma With IRF4 RearrangementRecurrent Aggressive B-Cell Non-Hodgkin LymphomaRecurrent ALK-Positive Large B-Cell LymphomaRecurrent Diffuse Large B-Cell Lymphoma Activated B-Cell TypeRecurrent Diffuse Large B-Cell Lymphoma Associated With Chronic InflammationRecurrent Diffuse Large B-Cell Lymphoma Germinal Center B-Cell TypeRecurrent Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent EBV-Positive Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Grade 3b Follicular LymphomaRecurrent High Grade B-Cell Lymphoma With MYC and BCL2 RearrangementsRecurrent High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Intravascular Large B-Cell LymphomaRecurrent Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRecurrent Primary Mediastinal Large B-Cell LymphomaRecurrent T-Cell/Histiocyte-Rich Large B-Cell LymphomaRecurrent Transformed Non-Hodgkin LymphomaRefractory Aggressive B-Cell Non-Hodgkin LymphomaRefractory ALK-Positive Large B-Cell LymphomaRefractory Diffuse Large B-Cell Lymphoma Activated B-Cell TypeRefractory Diffuse Large B-Cell Lymphoma Associated With Chronic InflammationRefractory Diffuse Large B-Cell Lymphoma Germinal Center B-Cell TypeRefractory Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRefractory EBV-Positive Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Grade 3b Follicular LymphomaRefractory High Grade B-Cell Lymphoma With MYC and BCL2 RearrangementsRefractory High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Intravascular Large B-Cell LymphomaRefractory Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRefractory Primary Mediastinal Large B-Cell LymphomaRefractory T-Cell/Histiocyte-Rich Large B-Cell LymphomaRefractory Transformed Non-Hodgkin Lymphoma
NOT_YET_RECRUITING
Odronextamab for Relapsed and Refractory Large B-cell Lymphomas Before CAR-T
Description

This phase II trial tests the effectiveness of odronextamab given before chimeric antigen receptor T (CAR-T) cell therapy (bridging therapy) in patients with large B-cell lymphomas that have come back after a period of improvement (relapsed) or that have not responded to previous treatment (refractory). Odronextamab is a bispecific antibody that can bind to two different antigens at the same time. Odronextamab binds to CD3, a T-cell surface antigen, and CD20 (a tumor-associated antigen that is expressed on B-cells during most stages of B-cell development and is often overexpressed in B-cell cancers) and may interfere with the ability of cancer cells to grow and spread. Bridging therapy has been used to maintain disease control and to increase the chance of successful receipt of CAR-T cell therapy. However, bridging therapy is typically given after leukapheresis, which does not help prevent disease progression between the decision for CAR-T cell therapy and leukapheresis. Giving odronextamab as bridging therapy before leukapheresis may delay disease progression to allow leukapheresis and increase the likelihood of successful CAR-T cell therapy in patients with relapsed or refractory large B-cell lymphomas.

RECRUITING
A Study of Glofitamab-based Treatment in People With Diffuse Large B-cell Lymphoma
Description

The researchers are doing this study to find out if the study treatment is an effective treatment that causes few or mild side effects in people with diffuse large B-cell lymphoma (DLBCL), high-grade B-cell lymphoma (HGBCL), or transformed lymphoma. The treatment being tested in this study is glofitamab, polatuzumab, and obinutuzumab in combination with standard treatment (the combination of rituximab, cyclophosphamide, doxorubicin, and prednisone, or R-miniCHP).

RECRUITING
A Study of Circulating Tumor DNA (ctDNA) Testing for People With B-Cell Lymphoma
Description

The purpose of this study is to find out how many people with B-cell lymphoma who are at high risk for central nervous system/CNS relapse test positive for cerebral spinal fluid/CSF ctDNA but test negative for CNS involvement using standard tests. The study will also look at how often CNS relapse happens in people with and without detected CSF ctDNA.

RECRUITING
ctDNA-guided Therapy Optimization in Newly Diagnosed DLBCL
Description

The purpose of this study is to 1) determine whether it is feasible to measure circulating tumor DNA (ctDNA) in real-time during standard treatment for newly diagnosed diffuse large B-cell lymphoma (DLBCL), and 2) evaluate the outcomes of participants with undetectable ctDNA in the middle of treatment who receive a shortened course of chemotherapy. There are no investigational drug agents to be administered in this study. The investigational assay, phased variant enrichment and detection sequencing (PhasED-seq) will be used to guide de-escalation of standard-of-care therapy for newly diagnosed DLBCL. The PhasED-seq assay has not yet been approved by the Food and Drug Administration (FDA).

NOT_YET_RECRUITING
Emapalumab Prevention of CAR-T Cell Associated Toxicities
Description

This research study involves assessing the impact of emapalumab as preventative management of CAR-T related cytokine release syndrome in participants with Non-Hodgkin's lymphoma (NHL). The research study involves the following study interventions: * Fludarabine and cyclophosphamide (Lymphodepleting Chemotherapy) * Axicabtagene Ciloleucel * Emapalumab

RECRUITING
Epcoritamab Plus Ibrutinib for the Treatment of Relapsed or Refractory Aggressive B-Cell Non-Hodgkin Lymphoma
Description

This phase Ib/II trial evaluates the safety, optimal dose, and efficacy of the combination of epcoritamab and ibrutinib in treating patients with aggressive B-cell non-Hodgkin lymphoma that has come back (relapsed) or responded to previous treatment (refractory). Epcoritamab, a bispecific antibody, binds to two different types of receptors (proteins present on the cell surface) at the same time. The two receptors that epcoritamab binds to are called CD3 and CD20. CD3 is found on T cells, which are important cells of the immune system that help fight cancer and infections. CD20 is found on the surface of most types of aggressive B-cell non-Hodgkin lymphoma cells. By binding to both CD3 and CD20, epcoritamab brings the two cells close together so the T cells can fight and kill the lymphoma B cells. Ibrutinib, a Bruton's tyrosine kinase (BTK) inhibitor, binds to a protein on B cells, a type of white blood cell from which the lymphoma developed. By doing this it decreases the ability of the lymphoma B cells to survive and grow. Ibrutinib may also improve the health (or fitness) of T cells thus making epcoritamab safer and/or more effective.

RECRUITING
Gene Therapy for CD19-Positive Hematologic Malignancies
Description

This is a Phase 1/2, first-in-human, open-label, dose-escalating trial designed to assess the safety and efficacy of VNX-101 in patients with relapsed or refractory CD19-positive hematologic malignancies.

RECRUITING
Epcoritamab-CAR T Cells for Large B-cell Lymphomas
Description

This study investigates the feasibility and efficacy of epcoritamab treatment before CAR T cells. This study also investigates if, when patients have residual lymphoma after CAR T cells, epcoritamab can help to effectively treat that lymphoma.

SUSPENDED
Genetically Engineered Cells (EGFRt/19-28z/IL-12 CAR T Cells) for the Treatment of Relapsed or Refractory CD19+ Hematologic Malignancies
Description

This phase I trial tests the safety, side effects, and best dose of genetically engineered cells called EGFRt/19-28z/IL-12 CAR T cells, and to see how they work in treating patients with hematologic malignancies that makes a protein called CD19 (CD19-positive) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Chimeric Antigen Receptor (CAR) T-cell Therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a certain protein on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor (CAR). Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. To improve the effectiveness of the modified T cells and to help the immune system fight cancer cells better, the modified T cells given in this study will include a gene that makes the T cells produce a cytokine (a molecule involved in signaling within the immune system) called interleukin-12 (IL-12). The researchers think that IL-12 may improve the effectiveness of the modified T cells, and it may also strengthen the immune system to fight cancer. Giving EGFRt/19-28z/IL-12 CAR T cells may be safe and tolerable in treating patients with relapsed or refractory CD19+ hematologic malignancies.

RECRUITING
T-Cell Therapy (EB103) in Adults With Relapsed/Refractory B-Cell Non-Hodgkin's Lymphoma (NHL)
Description

This is an open-label, dose escalation, multi-center, Phase I/II clinical trial to assess the safety of an autologous T-cell therapy (EB103) and to determine the Recommended Phase II Dose (RP2D) in adult subjects (≥ 18 years of age) who have relapsed/refractory (R/R) B-cell NHL. The study will include a dose escalation phase followed by an expansion phase.

RECRUITING
CC-99282 + Rituximab Early Post CART for Non-Hodgkin's Lymphoma
Description

This phase I trial tests the safety, side effects and best dose of CC-99282 with rituximab for the treatment of patients who have received chimeric antigen receptor (CAR) T cell therapy for non-Hodgkins lymphoma and in whom have had a sub-optimal response early on to CAR T-cell therapy. Immunotherapy with CC-99282 may induce changes in the body's immune system and may interfere with the ability of tumor cells to grow and spread. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Giving CC-99282 with rituximab may be a safe and effective treatment option for patients who have received CAR-T cell therapy for relapsed or refractory non-Hodgkin's lymphoma.

RECRUITING
CD79b-19 CAR T Cells in Non-Hodgkin Lymphoma
Description

This research study involves the study of CD79b-19 CAR T cells for treating people with relapsed/refractory Non-Hodgkin Lymphoma and to understand the side effects when treated with CD79b-19 CAR T cells. This research study involves the study drugs: * CD79b-19 CAR T cells * Fludarabine and Cyclophosphamide: Standardly used chemotherapy drugs as part of lymphodepleting process

RECRUITING
Testing the Combination of Anti-cancer Drugs Mosunetuzumab, Polatuzumab Vedotin, and Lenalidomide for the Treatment of Relapsed/Refractory Diffuse Large B-Cell Lymphoma
Description

This phase I trial studies the side effects and best dose of mosunetuzumab when given together with polatuzumab vedotin and lenalidomide in treating patients with diffuse large B-cell lymphoma (DLBCL) that has come back after a period of improvement (relapsed) or that has not responded to previous treatment (refractory). Mosunetuzumab and polatuzumab vedotin are monoclonal antibodies that may interfere with the ability of cancer cells to grow and spread. Polatuzumab, linked to a toxic agent called vedotin, attaches to CD79B positive cancer cells in a targeted way and delivers vedotin to kill them. Lenalidomide may stimulate or suppress the immune system in different ways and stop cancer cells from growing and by preventing the growth of new blood vessels that cancer cells need to grow. Giving mosunetuzumab with polatuzumab vedotin and lenalidomide may work better in treating patients with relapsed/refractory DLBCL.

RECRUITING
P-CD19CD20-ALLO1 Allogeneic CAR-T Cells in the Treatment of Subjects With B Cell Malignancies
Description

Phase 1 study comprised of open-label, dose escalation and expansion cohort study of P-CD19CD20-ALLO1 allogeneic T stem cell memory (Tscm) CAR-T cells in subjects with relapsed/refractory B cell malignancies

RECRUITING
Adaptive Bridging RT in R/R B-cell Lymphoma (Pre-CAR T)
Description

Participants are invited to take part in this research study because they have relapsed (cancer has come back) or refractory (cancer has not responded to treatment) B-cell Lymphoma and will be undergoing CAR T-cell Therapy. This research is being done to see if a new radiation therapy administration schedule will positively impact the logistics, time, cost, and side effects of radiation therapy. In this research study, participants will receive radiation therapy once weekly for 5 weeks. This is a novel administration schedule and we're looking to see how this schedule impacts side effects participants may experience, the time spent receiving radiation therapy, how much radiation therapy participants can receive, and how effective this new schedule is.

RECRUITING
Study Adding Drugs to Usual Treatment for Large B-Cell Lymphoma That Returned or Did Not Respond to Treatment
Description

This phase 2 trial studies the side effects and best dose of tazemetostat and zanubrutinib in combination with tafasitamab and lenalidomide, and to see how well these combinations work in treating patients with large B-cell lymphoma that returned or did not respond to earlier treatment. Tazemetostat is in a class of medications called EZH2 inhibitors. It helps to stop the spread of cancer cells. Zanubrutinib is in a class of medications called kinase inhibitors. It works by blocking the action of the abnormal protein that signals cancer cells to multiply. This helps stop the spread of cancer cells. tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide is in a class of medications called immunomodulatory agents. It works by helping the bone marrow to produce normal blood cells and by killing abnormal cells in the bone marrow. The addition of tazemetostat or zanubrutinib to tafasitamab and lenalidomide may be able to shrink the cancer or extend the time without cancer symptoms coming back.

RECRUITING
Tafasitamab and Lenalidomide Followed by Tafasitamab and ICE As Salvage Therapy for Transplant Eligible Patients with Relapsed/ Refractory Large B-Cell Lymphoma
Description

This phase II clinical trial evaluates tafasitamab and lenalidomide followed by tafasitamab and the carboplatin, etoposide and ifosfamide (ICE) regimen as salvage therapy for transplant eligible patients with large B-cell lymphoma that has come back (relapsed) or has not responded to treatment (refractory). Tafasitamab is a monoclonal antibody that may interfere with the ability of cancer cells to grow and spread. Lenalidomide may have antineoplastic activity which may help block the formation of growths that may become cancer. Drugs used in chemotherapy, such as carboplatin, etoposide and ifosfamide work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving tafasitamab and lenalidomide followed by ICE may be a better treatment for patients with relapsed or refractory large B-cell lymphomas.

Conditions
Recurrent B-Cell Lymphoma, Unclassifiable, with Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin LymphomaRecurrent Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Grade 3b Follicular LymphomaRecurrent High Grade B-Cell Lymphoma with MYC and BCL2 or BCL6 RearrangementsRecurrent High Grade B-Cell Lymphoma with MYC, BCL2, and BCL6 RearrangementsRecurrent High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRecurrent Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRecurrent Primary Mediastinal (Thymic) Large B-Cell LymphomaRecurrent T-Cell/Histiocyte-Rich Large B-Cell LymphomaRecurrent Transformed Follicular Lymphoma to Diffuse Large B-Cell LymphomaRecurrent Transformed Marginal Zone Lymphoma to Diffuse Large B-Cell LymphomaRefractory B-Cell Lymphoma, Unclassifiable, with Features Intermediate Between Diffuse Large B-Cell Lymphoma and Classic Hodgkin LymphomaRefractory Diffuse Large B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Grade 3b Follicular LymphomaRefractory High Grade B-Cell Lymphoma with MYC and BCL2 or BCL6 RearrangementsRefractory High Grade B-Cell Lymphoma with MYC, BCL2, and BCL6 RearrangementsRefractory High Grade B-Cell Lymphoma, Not Otherwise SpecifiedRefractory Primary Cutaneous Diffuse Large B-Cell Lymphoma, Leg TypeRefractory Primary Mediastinal (Thymic) Large B-Cell LymphomaRefractory T-Cell/Histiocyte-Rich Large B-Cell LymphomaRefractory Transformed Follicular Lymphoma to Diffuse Large B-Cell LymphomaRefractory Transformed Marginal Zone Lymphoma to Diffuse Large B-Cell Lymphoma
ACTIVE_NOT_RECRUITING
Study of 19(T2)28z1xx TRAC-Chimeric Antigen Receptor (CAR) T Cells in People with B-Cell Lymphoma
Description

The purpose of this research is to evaluate if study therapy, 19(T2)28z1xx TRAC-chimeric antigen receptor (CAR) T cells, may be an effective treatment for people with relapsed/refractory B-cell lymphoma. Researchers will also evaluate if this study therapy is safe, and to look for the highest dose that causes few or mild side effects in participants.