Treatment Trials

3 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Oxygen Transport in Normobaric vs. Hypobaric Hypoxia
Description

1) Oxygen Transport in Normobaric versus Hypobaric Hypoxia. 2) The purpose of this study is to examine acute responses in arterial and muscle tissue oxygenation during incremental exercise in normobaric versus hypobaric hypoxia. 3) The participants in this study will consist of 12 recreationally active males and females between the ages of 19 and 45.Recreationally active is defined as participating in moderate to vigorous physical activity for 30 minutes at least 3 days per week.4) Subjects will complete an incremental cycle test to volitional fatigue in three conditions in a randomized counter-balanced order, normobaric normoxia (20.9% O2, 730 mmHg), normobaric hypoxia (14.3% O2, 730 mmHg) and hypobaric hypoxia (20.9% O2, 530mmHg). Two of the three trials will be conducted in an environmental chamber to simulate normobaric normoxia at 350 m (elevation of Omaha, NE) and normobaric hypoxia at 3094 m (elevation of Leadville, CO). The hypobaric hypoxia trial will be conducted in Leadville, Colorado at 3094 m. Trials will be separated by at least two days. Rating of perceived exertion, heart rate, blood oxygenation, respiration rate, muscle tissue oxygenation, and whole body gases will be analyzed during the trials. 5) There is no follow-up as a part of this study.

COMPLETED
Effects of Mild Hypobaric Hypoxia on Sleep and Post-sleep Performance
Description

Hypobaric hypoxia (decreased oxygen supply to body tissues due to low atmospheric pressure) caused by exposure to high altitude disrupts sleep. Sleep deprivation is associated with degraded post-sleep performance of neurobehavioral tasks. The lowest altitude at which sleep and/or post-sleep performance are affected is not known. The study hypothesis is that sleep and/or post-sleep performance of neurobehavioral tasks will occur due to hypobaric hypoxia at altitudes of 8,000 or less.

ACTIVE_NOT_RECRUITING
Pharmacological Countermeasures for High Altitude
Description

The aim of this randomized, double-blind study is to determine whether erythropoietin (Procrit) and acetazolamide: 1) mitigates altitude-induced decrements in performance at moderate altitude (3,000 m) and 2) mitigates altitude-induced decrements in performance and reduce acute mountain sickness during prolonged exposure to high altitude (4,300 m; 15 days). Volunteers will complete 5 study phases: Phase 1) sea level baseline testing and a moderate altitude exposure; Phase 2) 4 week study intervention - randomly assigned to receive erythropoietin or placebo); Phase 3) 3 1/2 days of acetazolamide and a moderate altitude exposure; Phase 4) high altitude acclimatization - 15 days at Pikes Peak; and Phase 5) two week deacclimatization. Test battery include VO2peak, 3.2 km treadmill time trial, measures of gas exchange and ventilation during rest and exercise, and blood collection.