19 Clinical Trials for Various Conditions
The goal of this clinical trial is to learn about brain waves during transauricular vagus nerve stimulation (taVNS) in healthy children. The main questions it aims to answer are: * What is the safety, tolerability, and physiological response of taVNS in children? * Does the electroencephalogram (EEG) change during taVNS? Participants will * undergo a brief titration session where taVNS will be titrated to below perceptual threshold * receive one session of 30 minutes of taVNS * undergo clinical EEG monitoring during taVNS * Continuous cardiorespiratory monitoring via pulse oximetry and blood pressure every 5 minutes * Answer tolerability questions before, during and after 30 minute taVNS session
RESTORE is a randomized clinical trial investigating the safety and feasibility of using EEG treatment targets (burst suppression vs. seizure suppression) for post-cardiac arrest refractory status epilepticus treatment.
The brain is such a metabolically active organ that it consumes about 20% of oxygen burned every minute by an average adult even though it only contributes about 2% of the body weight. As a result, the brain produces a disproportionately high amount of CO2 every minute in comparison with the rest of the body.
The investigators propose to compare the proteomic analysis of umbilical venous blood from neonates with brain injury to gestational age matched noninjured controls. After delivery an umbilical arterial gas and a 10 ml umbilical venous sample are obtained, then the remainder of the cord blood is discarded. The investigators plan to use this cord blood that would otherwise be discarded to perform our proteomic analysis. The investigators will use up to 20 ml of cord blood per delivery. This will be a 5 year study during which time the investigators hope to analyze 450 infants at Johns Hopkins Hospital and Bayview Medical Center. The investigators will obtain an umbilical venous sample from infants born at \< 34 weeks gestation. For infants born at \> 34 weeks the investigators will obtain an umbilical venous sample for any infant suspected to be at risk for neurologic injury by having a diagnosis of chorioamnionitis during labor, nonreassuring fetal heart rate tracing at the time of delivery, or a 5 minute Apgar \< 7. For the infants born at \< 34 weeks the brain injured infants will be compared to gestational age matched controls without brain injury. For the infants born at \> 34 weeks, each infant later confirmed to have neurologic morbidity will be compared to a gestational age matched noninjured control. The investigators hope to use proteomic analysis to determine if there are measurable differences in protein expression between the 2 groups.
The primary objective is to characterize the prevalence and type of ABI following cannulation for pediatric patients who require ECMO support. The secondary objective is to describe the time course and rates of ABI using ultralow-field bedside MRI relative to both duration of ECMO support and clinical imaging obtained in routine care of pediatric ECMO patients.
The goal of this clinical trial is to explore the effect of FDA-approved antiseizure drugs in the brain connectivity patterns of severe and moderate acute brain injury patients with suppression of consciousness. The main questions it aims to answer are: * Does the antiseizure medication reduce the functional connectivity of seizure networks, as identified by resting state functional MRI (rs-fMRI), within this specific target population? * What is the prevalence of seizure networks in patients from the target population, both with EEG suggestive and not suggestive of epileptogenic activity? Participants will have a rs-fMRI and those with seizure networks will receive treatment with two antiseizure medications and a post-treatment rs-fMRI. Researchers will compare the pretreatment and post-treatment rs-fMRIs to see if there are changes in the participant's functional connectivity including seizure networks and typical resting state networks.
This is a multicenter trial to establish the efficacy of cooling and the optimal duration of induced hypothermia for neuroprotection in pediatric comatose survivors of cardiac arrest. The study team hypothesizes that longer durations of cooling may improve either the proportion of children that attain a good neurobehavioral recovery or may result in better recovery among the proportion already categorized as having a good outcome.
A multicenter, randomized, adaptive allocation clinical trial to determine if increasing durations of induced hypothermia are associated with an increasing rate of good neurological outcomes and to identify the optimal duration of induced hypothermia for neuroprotection in comatose survivors of cardiac arrest.
This protocol is designed to enable access to intravenous infusions of banked umbilical cord blood (CB), that is thawed and not more than minimally manipulated, for children with various brain disorders. Children with cerebral palsy, congenital hydrocephalus, apraxia, stroke, hypoxic brain injury and related conditions will be eligible if they have normal immune function and do not qualify for, have previously participated in, or are unable to participate in an active cell therapy clinical trial at Duke Medicine. For the purpose of this protocol the term children refers to patients less than 26 years of age. Cord blood is administered as a cellular infusion without prior treatment with chemotherapy or immunosuppression. The mechanism of action is through paracrine signaling of cord blood monocytes inducing endogenous cells to repair existing damage.
Few early prognostic indicators are currently available for patients' families and clinicians following out of hospital cardiac arrest (OHCA), and blood biomarkers may be of prognostic value in these cases. Brain tissue is highly dependent upon aerobic respiration, and oxygen deprivation result in irreversible neuronal cell injury. Peptides released into the blood by injured neuronal cells can be measured to estimate degree of injury, and potentially predict long term neurological outcome.
The purpose of this study is to characterize the normal brain function of premature infants (23 to 31+6 weeks GA) during birth transition and through the first 72 hours of life.
This study is a randomized, controlled trial to assess safety and effectiveness of whole body hypothermia for 72 hours in preterm infants 33-35 weeks gestational age (GA) who present at \<6 hours postnatal age with moderate to severe neonatal encephalopathy (NE). The study will enroll infants with signs of NE at 18 NICHD Neonatal Research Network sites, and randomly assign them to either receive hypothermia or participate in a non-cooled control group.
The Optimizing Cooling trial will compare four whole-body cooling treatments for infants born at 36 weeks gestational age or later with hypoxic-ischemic encephalopathy: (1) cooling for 72 hours to 33.5°C; (2) cooling for 120 hours to 33.5°C; (3) cooling for 72 hours to 32.0°C; and (4) cooling for 120 hours to 32.0°C. The objective of this study is to evaluate whether whole-body cooling initiated at less than 6 hours of age and continued for 120 hours and/or a depth at 32.0°C in will reduce death and disability at 18-22 months corrected age.
This study is a randomized, placebo-controlled, clinical trial to evaluate whether induced whole-body hypothermia initiated between 6-24 hours of age and continued for 96 hours in infants ≥ 36 weeks gestational age with hypoxic-ischemic encephalopathy will reduce the incidence of death or disability at 18-22 months of age. The study will enroll 168 infants with signs of hypoxic-ischemic encephalopathy at 16 NICHD Neonatal Research Network sites, and randomly assign them to either receive hypothermia or participate in a non-cooled control group.
This study examines the potential benefits of a home stimulation program to treat infants who have suffered from brain asphyxiation (lack of oxygen). The program involves one year of stimulatory activities. Progress will be evaluated through neurological and behavioral exams.
This large multicenter trial tested whether cerebral cooling initiated within 6 hours of birth and continued for 72 hours would reduce the risk of death and moderate to severe neurodevelopmental injury at 18-22 months corrected age. Infants at least 36 weeks gestation with an abnormal blood gas within 1 hour of birth, or a history of an acute perinatal event and a 10-min Apgar score \<5, or continued need for ventilation were screened. Following a neurological exam, those with moderate to severe encephalopathy were randomized to a 72-hour period of total body cooling (cooling blanket, followed by slow re-warming). The study was conducted in two phases: Phase I (20 infants) were examined for the safety of an esophageal temperature of 34-35 C; Phase II (main trial, 200 infants) were evaluated for the safety and efficacy of an esophageal temperature of 33-34 C. Cardio-respiratory, electroencephalograms (EEGs), renal, metabolic, and hematologic status, and esophageal and abdominal skin temperature were monitored during the 72 hours of intervention. Surviving children were given neurodevelopmental examinations at 18-22 months corrected age and again at school age (6-7 years of age).
Neonates presenting with neurologic symptoms require rapid, non-invasive imaging with high spatial resolution and tissue contrast. The purpose of this study is to evaluate brain perfusion using contrast-enhanced ultrasound CEUS in bedside monitoring of neonates and infants with hypoxic ischemic injury (HII). Investigational CEUS scan will be performed separately from clinically indicated conventional US, in the ICU. Subjects will be scanned with CEUS at two different time-points (at the time HII is first suspected or diagnosed and at time of MRI scan), separately from clinically indicated ultrasound. The CEUS scan will be interpreted by the sponsor-investigator. The study will be conducted at one site, The Children's Hospital of Philadelphia. It is expected that up to 100 subjects will be enrolled per year, for up to two years, for a total enrollment of up to 200 subjects.
To determine effectiveness of therapy to improve neurodevelopmental outcomes in infants with mild HIE. To determine the adverse effects of Therapeutic Hypothermia (TH) in mild HIE on the neonate and his/her family. Determine heterogeneity of the treatment effect across key subgroups obtained in the first 6 hours after birth prior to the decision to initiate therapy.
Traumatic brain injury (TBI) is a major cause of death and disability, with an estimated cost of 45 billion dollars a year in the United States alone. Every year, approximately 1.4 million sustain a TBI, of which 50,000 people die, and another 235,000 are hospitalized and survive the injury. As a result, 80,000-90,000 people experience permanent disability associated with TBI. This project is designed to determine whether a device designed to measure brain tissue oxygenation and thus detect brain ischemia while it is still potentially treatable shows promise in reducing the duration of brain ischemia, and to obtain information required to conduct a definitive clinical trial of efficacy. A recently approved device makes it feasible to directly and continuously monitor the partial pressure of oxygen in brain tissue (pBrO2). Several observational studies indicate that episodes of low pBrO2 are common and are associated with a poor outcome, and that medical interventions are effective in improving pBrO2 in clinical practice. However, as there have been no randomized controlled trials carried out to determine whether pBrO2 monitoring results in improved outcome after severe TBI, use of this technology has not so far been widely adopted in neurosurgical intensive care units (ICUs). This study is the first randomized, controlled clinical trial of pBrO2 monitoring, and is designed to obtain data required for a definitive phase III study, such as efficacy of physiologic maneuvers aimed at treating pBrO2, and feasibility of standardizing a complex intensive care unit management protocol across multiple clinical sites. Patients with severe TBI will be monitored with Intracranial pressure monitoring (ICP) and pBrO2 monitoring, and will be randomized to therapy based on ICP along (control group) or therapy based on ICP in addition to pBrO2 values (treatment group). 182 participants will be enrolled at four clinical sites, the University of Texas Southwestern Medical Center/Parkland Memorial Hospital, the University of Washington/Harborview Medical Center, the University of Miami/Jackson Memorial Hospital, and the University of Pennsylvania/Hospital of the University of Pennsylvania. Functional outcome will be assessed at 6-months after injury.