25 Clinical Trials for Various Conditions
This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patient's response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.
This study gathers health information for the Project: Every Child for younger patients with cancer. Gathering health information over time from younger patients with cancer may help doctors find better methods of treatment and on-going care.
RATIONALE: PD 0332991 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase II trial is studying the side effects and how well PD 0332991 works in treating patients with refractory solid tumors.
This phase I trial is studying how well ipilimumab works after allogeneic stem cell transplant in treating patients with persistent or progressive cancer. Monoclonal antibodies can locate cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells.
RATIONALE: Drugs used in chemotherapy, such as cisplatin, ifosfamide, and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Colony-stimulating factors, such as pegfilgrastim, may increase the number of immune cells found in bone marrow or peripheral blood and may help the immune system recover from the side effects of chemotherapy. PURPOSE: This phase II trial is studying the side effects and how well giving combination chemotherapy together with pegfilgrastim works in treating patients with previously untreated germ cell tumors.
RATIONALE: Sunitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase II trial is studying how well sunitinib works in treating patients with metastatic germ cell tumors that have relapsed or not responded to treatment.
RATIONALE: Germ cell tumors (GCT) are highly sensitive to chemotherapy such that even with metastatic disease at diagnosis, many patients can be cured. Patients who fall into the poor risk category or others who relapse can be successfully salvaged with high dose chemotherapy and autologous stem cell transplant (AuSCT). As in other diseases such as myeloma, sequential high dose chemotherapy and AuSCT may improve overall and disease free survival. PURPOSE: Because prior investigations in GCT suggest that a subset of high risk or relapsed patients may be cured with sequential cycles of high dose chemotherapy and AuSCT, we propose investigating how well non-cross resistant conditioning regimens work in treating patients with relapsed or high risk GCT.
RATIONALE: Drugs used in chemotherapy, such as paclitaxel, ifosfamide, and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. An autologous peripheral stem cell transplant may be able to replace blood-forming cells that were destroyed by chemotherapy. This may allow more chemotherapy to be given so that more tumor cells are killed. PURPOSE: This phase I/II trial is studying the side effects and best dose of ifosfamide when given together with paclitaxel and carboplatin followed by an autologous stem cell transplant and to see how well they work in treating patients with germ cell tumors that did not respond to cisplatin.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This randomized phase III trial is comparing two different combination chemotherapy regimens to see how well they work in treating patients with stage II or stage III non-seminomatous germ cell tumors.
RATIONALE: Drugs used in chemotherapy, such as ifosfamide, cisplatin, paclitaxel, and vinblastine, work in different ways to stop tumor cells from dividing so they stop growing or die. It is not yet known whether ifosfamide and cisplatin are more effective when combined with paclitaxel or vinblastine in treating germ cell tumors. PURPOSE: This randomized phase III trial is studying paclitaxel, ifosfamide, and cisplatin to see how well they work compared to vinblastine, ifosfamide, and cisplatin in treating men with progressive or recurrent metastatic germ cell tumors.
RATIONALE: Drugs used in chemotherapy, such as ixabepilone, work in different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: This phase II trial is studying how well ixabepilone works in treating patients with metastatic germ cell tumors that are refractory to cisplatin.
RATIONALE: Acupuncture may be effective in relieving mucositis-related pain caused by chemotherapy in patients undergoing stem cell transplantation. PURPOSE: Randomized clinical trial to study the effectiveness of acupuncture in treating mucositis-related pain caused by high-dose chemotherapy in patients who are undergoing stem cell transplantation.
RATIONALE: Telephone counseling by trained counselors may enhance the well-being and quality of life of patients who have undergone stem cell transplantation for cancer. PURPOSE: Randomized clinical trial to compare the effectiveness of standard follow-up care with extended follow-up care in treating patients who have undergone stem cell transplantation for cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of liposomal doxorubicin in treating children who have refractory solid tumors.
RATIONALE: Antivirals such as ribavirin are used to treat infections caused by viruses. It is not yet known if ribavirin is more effective with or without monoclonal antibody therapy in treating patients who develop RSV pneumonia following peripheral stem cell transplantation. PURPOSE: Randomized phase III trial to compare the effectiveness of ribavirin with or without monoclonal antibody in treating patients who develop RSV pneumonia following peripheral stem cell transplantation.
RATIONALE: Beclomethasone may be an effective treatment for graft-versus-host disease. PURPOSE: Phase I/II trial to study the effectiveness of beclomethasone in treating patients who have graft-versus-host disease of the esophagus, stomach, small intestine, or colon.
RATIONALE: Captopril may protect the lungs from the side effects of bone marrow or stem cell transplantation. PURPOSE: Randomized phase III trial to determine the effectiveness of captopril to lessen the side effects in patients who are undergoing bone marrow or stem cell transplantation following chemotherapy and radiation therapy.
RATIONALE: Interleukin-11 and filgrastim stimulate the production of blood cells. Giving these drugs to stimulate peripheral stem cells that can be collected for peripheral stem cell transplantation may result in fewer side effects after transplant. PURPOSE: Phase II trial to study the effectiveness of interleukin-11 plus filgrastim prior to peripheral stem cell transplantation in patients who have non-Hodgkin's lymphoma, Hodgkin's disease, breast cancer, or other solid tumors.
RATIONALE: White blood cells from donors may be able to kill cancer cells in patients with cancer that has recurred following bone marrow or peripheral stem cell transplantation. PURPOSE: Phase II trial to study the effectiveness of donated white blood cells in treating patients who have relapsed cancer following transplantation of donated bone marrow or peripheral stem cells.
RATIONALE: Giving itraconazole or fluconazole may be effective in preventing infections in patients undergoing peripheral stem cell or bone marrow transplantation. It is not yet known whether itraconazole is more effective than fluconazole for preventing infections. PURPOSE: Randomized phase III trial to compare the effectiveness of itraconazole with fluconazole to prevent infections in patients undergoing peripheral stem cell or bone marrow transplantation.
RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. Combining chemotherapy and peripheral stem cell transplantation with biological therapy may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of biological therapy with sargramostim, interleukin-2, and interferon alfa following chemotherapy and peripheral stem cell transplantation in treating patients who have cancer.
RATIONALE: Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of interleukin-12 in treating patients who have hematologic cancer or solid tumor.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase II trial is studying how well giving combination chemotherapy together with bone marrow transplantation or peripheral stem cell transplantation works in treating patients with relapsed germ cell cancer.
RATIONALE: White blood cells from donors who have been exposed to cytomegalovirus may be able to help prevent this infection from occurring in patients who are undergoing bone marrow or peripheral stem cell transplantation. PURPOSE: Phase II trial to study the effectiveness of donated white blood cells to prevent cytomegalovirus infection in patients who are undergoing bone marrow or peripheral stem cell transplantation.
RATIONALE: Caspofungin acetate or amphotericin B liposomal may be effective in preventing or controlling fever and neutropenia caused by chemotherapy, bone marrow transplantation, or peripheral stem cell transplantation. It is not yet known whether caspofungin acetate or amphotericin B liposomal is more effective for treating these side effects. PURPOSE: Randomized phase III trial to compare the effectiveness of caspofungin acetate with that of amphotericin B liposomal in treating patients who have persistent fever and neutropenia after receiving anticancer therapy.