5 Clinical Trials for Various Conditions
Ventricular tachycardia (VT, a potentially fatal condition where the ventricle of the heart beats rapidly) superimposed on non-ischemic cardiomyopathy (NICM, a disease of heart with broad etiologies except coronary artery disease). This disease has been associated with inflammation in the heart. The purpose of this study is to assess the benefit of immunosuppressive therapy to suppress the VT, improve heart function, avoid invasive intervention and hospitalization. Positron Emission Tomography (PET) imaging shows inflammation in the heart. After enrollment, baseline tests (including physical exams, blood tests, genetic test, electrocardiography, echocardiography) will be done. Next, will be an 8-week medication regimen which contains either immunosuppressive drugs or standard GDMT without immunosuppressant medication. Some of the examinations will be repeated during the study to evaluate the treatment response and monitor any adverse events.
Arrhythmogenic ventricular cardiomyopathy (AVC) is a genetic condition which affects the heart and can lead to heart failure and rhythm problems, of which, sudden cardiac arrest or death is the most tragic and dangerous. Diagnosis and screening of blood-relatives is very difficult as the disease process can be subtle, but sufficient enough, so that the first event is sudden death. The Mayo Clinic AVC Registry is a collaboration between Mayo Clinic, Rochester, USA and Papworth Hospital, Cambridge University Hospitals, Cambridge, UK. The investigators aim to enroll patients with a history of AVC or sudden cardiac death which may be due to AVC, from the US and UK. Family members who are blood-relatives will also be invited, including those who do not have the condition. Data collected include symptoms, ECG, echocardiographic, MRI, Holter, loop recorder, biopsies, exercise stress testing, blood, buccal and saliva samples. Objectives of the study: 1. Discover new genes or altered genes (variants) which cause AVC 2. Identify biomarkers which predict (2a) disease onset, (2b) disease progression, (2c) and the likelihood of arrhythmia (ventricular, supra-ventricular and atrial fibrillation) 3. Correlate genotype with phenotype in confirmed cases of AVC followed longitudinally using clinical, electrocardiographic and imaging data. 4. Characterize desmosomal changes in buccal mucosal cells with genotype and validate with gold-standard endomyocardial biopsies
This study is designed to determine the efficacy and safety of colchicine in patients with chronic kidney disease.
In Fabry disease (FD), α-galactosidase A deficiency leads to the accumulation of globotriaosylceramide (Lyso-Gb3 and Gb3), triggering a pathologic cascade that causes progressive damage to multiple organs, including the heart. The heart is one of the organs that is very sensitive to the deficiency of α-galactosidase A. There is a subgroup of patients with significant residual α-galactosidase activity and a phenotype with primary cardiac involvement, occasionally referred as "cardiac variant." The manifestations of cardiac involvement in FD are left ventricular hypertrophy (LVH), diastolic dysfunction, microvascular angina. Cardiac hypertrophy is the most common cardiac pathology and cause of death in patients with FD. The elevation of the inflammatory markers strongly demonstrates that chronic inflammation drives the cardiovascular pathophysiology in FD. Moreover, plasma TNF, TNFR2, Il-6 specifically elevated in FD patients with cardio hypertrophy. The chronic inflammation in combination with elevated Lyso-Gb3 further drives the FD progression even under therapy. The expression of the endothelial-cardiomyocyte growth factors will change in response to chronic inflammation during the development of cardiac hypertrophy. This is a clinical observational study designed to identify the role of inflammatory signaling markers and secreted growth factors in the progression of cardiac pathology in FD
Background: - Research has shown that certain proteins in cells may be linked to higher risks of developing inflammations, tumors, and other medical problems. By examining how the blood cells of healthy volunteers respond to environmental exposures, researchers hope to better understand the relationship of genes, environmental factors, and human diseases. Objectives: - To examine how specific genes and proteins in blood cells respond to environmental exposures. Eligibility: - Healthy volunteers between 18 and 45 years of age. Design: * The study will involve one visit of 45 to 60 minutes. * Participants will be screened with a brief physical examination and finger stick to determine if they are eligible to donate blood for the study, and will complete a questionnaire about any medications or other drugs (e.g., cigarettes) they may be taking. * Participants will provide a blood sample for research purposes.