Treatment Trials

5 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Simulation-Free Hippocampal-Avoidance Whole Brain Radiotherapy Using Diagnostic MRI-Based and Cone Beam Computed Tomography-Guided On-Table Adaptive Planning in a Novel Ring Gantry Radiotherapy Device
Description

Hippocampal-avoidance whole brain radiation therapy (HA-WBRT) limits radiation dose to the hippocampal-avoidance region while still delivering therapeutic doses of radiation to the whole brain. When used in addition to prophylactic memantine, this technique has been shown to better preserve cognitive function in patients with brain metastases outside of the hippocampal-avoidance region with no difference in intracranial progression-free and overall survival. However, HA-WBRT requires considerably longer planning time when compared to conventional WBRT (5-10 business days, compared to next-day), and studies have shown that brain metastases can grow in as rapidly as one week. A proposed solution for quicker initiation of HA-WBRT is the use of simulation-free radiation treatment planning, in which pre-existing diagnostic images are used to generate the radiation treatment plan (as opposed to acquiring planning-specific image sets). This will be paired with the use of artificial intelligence (AI)-assisted semi-automated planning using the FDA-approved treatment planning system called Ethos Therapy. The investigators have developed an institutional HA-WBRT auto-planning template, which has been retrospectively validated for the creation of plans that are compliant with the gold standard NRG Oncology CC001 clinical trial and are dosimetrically comparable to traditional HA-WBRT plans. Semi-automated plans will be constructed using diagnostic imaging, which will be refined as needed (adjustments for difference in gross head positioning between diagnostic imaging and radiation treatment positioning, etc.) while the patient is on the treatment table at fraction one using adaptive radiation planning. Adaptive radiotherapy is standard-of-care practice for other disease sites. The purpose of this study is to demonstrate the feasibility and safety of a simulation-free workflow for HA-WBRT that is AI-assisted and semi-automated.

COMPLETED
Advanced MRI Scan Before and After Radiation Therapy for the Detection of Intracranial Metastasis
Description

This clinical trial studies the different types of investigational imaging techniques called sequences during magnetic resonance imaging (MRI) of the head before and after radiation therapy in patients with cancer that has spread to the brain (intracranial metastases). This clinical trial also compares these new techniques with standard MRI imaging to see if sequences provide better images. Diagnostic procedures, such as MRI, may help find and diagnose solid organ cancer and find out how far the disease has spread.

COMPLETED
DECT in Imaging Patients With Solid Organ Cancer With Intracranial Metastasis
Description

This trial studies how well dual energy computed tomography (DECT) works in imaging patients with solid organ cancer that has spread to the brain. Imaging techniques, such as DECT, may help find and diagnose tumor cells and find out how far the tumor cells have spread in the brain.

COMPLETED
Bevacizumab and Cediranib Maleate in Treating Patients With Metastatic or Unresectable Solid Tumor, Lymphoma, Intracranial Glioblastoma, Gliosarcoma or Anaplastic Astrocytoma
Description

This phase I trial is studying the side effects and best dose of bevacizumab and cediranib maleate in treating patients with metastatic or unresectable solid tumor, lymphoma, intracranial glioblastoma, gliosarcoma or anaplastic astrocytoma. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Cediranib maleate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Bevacizumab and cediranib maleate may also stop the growth of cancer cells by blocking blood flow to the cancer. Giving bevacizumab together with cediranib maleate may kill more cancer cells.

Conditions
Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChildhood Burkitt LymphomaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Nasal Type Extranodal NK/T-cell LymphomaCutaneous B-cell Non-Hodgkin LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaProgressive Hairy Cell Leukemia, Initial TreatmentRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Hairy Cell LeukemiaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Hodgkin LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Small Noncleaved Cell LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IVA Mycosis Fungoides/Sezary SyndromeStage IVB Mycosis Fungoides/Sezary SyndromeT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUnspecified Adult Solid Tumor, Protocol SpecificUnspecified Childhood Solid Tumor, Protocol SpecificWaldenström Macroglobulinemia
RECRUITING
A Study of BDTX-4933 in Patients With KRAS, BRAF and Select RAS/MAPK Mutation-Positive Cancers
Description

BDTX-4933-101 is a first-in-human, open-label, Phase 1 dose escalation and an expansion cohort study designed to evaluate the safety and tolerability, maximum tolerated dose (MTD) and the preliminary recommended Phase 2 dose (RP2D), and antitumor activity of BDTX-4933. The study population for the Dose Escalation part of the study comprises adults with recurrent advanced/metastatic non-small cell lung cancer (NSCLC) harboring KRAS non-G12C mutations, BRAF, or CRAF (RAF1) mutations, advanced/metastatic melanoma harboring BRAF or NRAS mutations, histiocytic neoplasms harboring BRAF, CRAF, or NRAS mutations, and other solid tumors harboring BRAF mutations. The study population for the Dose Expansion part of the study comprises adults with recurrent advanced/metastatic NSCLC harboring KRAS non-G12C mutations. All patients will self-administer BDTX-4933 orally in 28-day cycles until disease progression, toxicity, withdrawal of consent, or termination of the study.