Treatment Trials

74 Clinical Trials for Various Conditions

Focus your search

RECRUITING
A Study to Test the Safety, Tolerability, and Efficacy of an Antibody, REGN7999, Injected Under the Skin for the Treatment of Iron Overload in Adult Participants With Non-Transfusion Dependent β-thalassemia, Using MRI Scans to Measure Iron Levels in the Body
Description

This study is researching an experimental drug called REGN7999 (called "study drug"). The study is focused on patients with non-transfusion dependent beta-thalassemia. The aim of the study is to see how safe and effective the study drug is. The study is looking at several other research questions, including: * Whether the study drug lowers extra iron levels in the body * What side effects may happen from taking the study drug * How much study drug is in the blood at different times * Whether the body makes antibodies against the study drug (which could make the drug less effective or could lead to side effects)

TERMINATED
Safety of SP-420 in the Treatment of Transfusional Iron Overload
Description

This study enrolls patients with myelodysplastic syndrome (MDS) and myelofibrosis (MFS), with transfusional iron overload and treats them with the investigational iron chelator, SP-420. SP-420 may be better tolerated and safer than commercially available iron chelators. Iron chelation therapy (ICT) has been shown to improve outcomes in iron overload, but adherence is poor due to problems related to ease of administration, tolerability, and safety.

Conditions
COMPLETED
MRI QSM Imaging for Iron Overload
Description

The overall goal of this project is to develop and validate a novel technique for Magnetic Resonance Imaging (MRI)-based Quantitative Susceptibility Mapping (QSM) of the abdomen, for non-invasive assessment of liver iron deposition. In this work, study team will develop and optimize advanced data acquisition and image reconstruction methods to enable QSM of the abdomen. Further, investigators will determine the accuracy, repeatability, and reproducibility of abdominal QSM for iron quantification in patients with liver iron overload. Excessive accumulation of iron in various organs, including the liver, which affects both adult and pediatric populations, is toxic and requires treatment aimed at reducing body iron stores. Accurate assessment of liver iron concentration is critical for the detection and staging of iron overload as well as for longitudinal monitoring during treatment. In summary, this project will develop a novel MRI-based QSM technique designed for the abdomen and will validate it in pediatric and adult patients with liver iron overload. Upon successful validation, QSM will provide accurate, repeatable, and reproducible quantification of LIC based on a fundamental property of tissue.

COMPLETED
Safety and Acceptability of Deferiprone Delayed Release Tablets in Patients With Systemic Iron Overload
Description

Safety, tolerability, and acceptability of twice-daily dosing with deferiprone delayed-release (DR) tablets in patients with systemic iron overload.

COMPLETED
A Study of LJPC-401 for the Treatment of Iron Overload in Adult Patients With Hereditary Hemochromatosis
Description

This study is a Phase 2 multicenter, randomized, placebo controlled, single-blind study. The primary objective of the study is to compare the effect of weekly dosing of LJPC-401 (synthetic human hepcidin) versus placebo on transferrin saturation (TSAT) in an adult hereditary hemochromatosis patient population.

TERMINATED
A Study With LJPC-401 for the Treatment of Myocardial Iron Overload in Patients With Transfusion-Dependent Beta Thalassemia
Description

This study is a Phase 2 multicenter, randomized, open-label, parallel-group study. The primary objective of the study is to evaluate the effect of LJPC-401 (synthetic human hepcidin) on iron levels in patients with transfusion-dependent beta thalassemia with myocardial iron overload.

TERMINATED
Long-term Safety and Efficacy of Ferriprox® in Iron Overloaded Patients With Sickle Cell Disease or Other Anemias
Description

This is a long-term follow-up to an earlier study, LA38-0411. Its purpose is to gather more information about the safety and efficacy of deferiprone in patients with sickle cell disease or other anemias who suffer from iron overload caused by regular blood transfusions.

COMPLETED
Study to Evaluate Treatment Compliance, Efficacy and Safety of an Improved Deferasirox Formulation (Granules) in Pediatric Patients (2-<18 Years Old) With Iron Overload
Description

This was a randomized, open-label, multicenter, two arm, phase II study to evaluate treatment compliance and change in serum ferritin of a deferasirox granule formulation and a deferasirox dispersible tablet (DT) formulation in children and adolescents aged ≥ 2 and \< 18 years at enrolment with any transfusion-dependent anemia requiring chelation therapy due to iron overload, to demonstrate the effect of improved compliance on iron burden. Randomization was stratified by age groups (2 to \<10 years, 10 to \<18 years) and prior iron chelation therapy (Yes/ No). There were two study phases which include a 1 year core phase where participants were randomized to a 48 week treatment period to either Deferasirox DT or granules, and an optional extension phase where all participants received the granules up to 5 years. Participants who demonstrated benefit to granules or DT in the core phase, and/or expressed the wish to continue in the optional extension phase on granules, were offered this possibility until there was local access to the new formulation (granules or film-coated tablet (FCT)) or up to 5 years, whichever occurred first.

COMPLETED
Transfusional Iron Overload Among Leukemia Survivors
Description

Red cell transfusions are an important part of supportive cancer therapy. The iron in the transfused blood may build up in the body since the human body has no way to get rid of extra iron. Iron tends to build up in the liver and the heart muscle. It is unknown if iron build-up is present many years after completing cancer therapy. It is also not known if extra iron causes harm to internal organs. Researchers at St. Jude Children's Research Hospital (SJCRH) want to understand if iron build-up (called "iron overload") exists in survivors of leukemia. They also want to know if iron overload can cause injury to your organs if it is present. Liver iron accumulation has been documented in childhood cancer survivors, however, it is not known if iron associated organ toxicity is contributing to the long-term morbidity that has been well documented among these survivors. This study will investigate the prevalence of iron overload and the association of tissue iron burden with markers of organ dysfunction in leukemia survivors. This study will determine the prevalence of iron overload among long-term leukemia survivors that underwent blood transfusion. This study will use blood and magnetic resonance imaging (MRI) testing to determine iron overload of specified organs. Understanding the prevalence of iron overload could impact surveillance practices in leukemia survivors. PRIMARY OBJECTIVE: * To determine the prevalence of iron overload in the liver \[liver iron concentration (LIC) \>3mg/g using R2\* MRI measurements\] and in the heart (T2\* \<20 ms) among long-term leukemia survivors transfused with ≥50ml/kg of packed red blood cells. SECONDARY OBJECTIVES: * To examine the relationship between hepatic, cardiac, and endocrine dysfunction and transfusionally acquired iron overload as defined by R2\* and T2\* MRI among survivors of pediatric leukemias. * To investigate the association between serum ferritin, transferrin saturation, non-transferrin-bound iron, and hepcidin measurements with R2\* and T2\* MRI-defined iron overload.

COMPLETED
Multi-Center Study of Iron Overload: Survey Study (MCSIO)
Description

The purpose of this study is to demonstrate that a sufficient number of iron-overloaded thalassemia (THAL), Sickle Cell Disease (SCD)and Diamond Blackfan Anemia (DBA) populations with similar duration of chronic transfusion, and age at start of transfusions would be available for a confirmatory study. The study will examine the hypothesis that a chronic inflammatory state in SCD leads to hepcidin- and cytokine-mediated iron withholding within the RES (reticuloendothelial system), lower plasma NTBI (non-transferrin bound iron) levels, less distribution of iron to the heart in SCD.

COMPLETED
Combination Deferasirox and Deferiprone for Severe Iron Overload in Thalassemia
Description

We hypothesize that the combination treatment with deferasirox and deferiprone will be well tolerated and will result in significant improvement in cardiac and liver iron levels.

TERMINATED
Study for Transfusionally Iron Overloaded Children, Adolescents and Adults Using FBS0701 (SSP-004184)
Description

The purpose of this extension study is to evaluate SSP-004184AQ in patients with transfusional iron overload and to provide data on long term safety and efficacy. SSP-004184AQ is an iron chelator under development for chronic daily oral administration to patients with transfusional iron overload

TERMINATED
Pharmacokinetics of SSP-004184 in the Treatment of Chronic Iron Overload Requiring Chelation Therapy
Description

The purpose of this study is to evaluate SSP-004184AQ in patients with transfusional iron overload whose primary diagnosis is hereditary or congenital anemia. SSP-004184AQ is an iron chelator under development for chronic daily oral administration to patients with transfusional iron overload.

TERMINATED
Safety, Efficacy and Pharmacokinetics of an Oral Iron Chelator Given for a Year to Pediatric Patients With Iron Overload
Description

This is an open-label study to assess the pharmacokinetics, safety, efficacy and tolerability of SSP-004184AQ. The study consists of two phases: the pharmacokinetic phase, using a single 16 mg/kg dose of SSP-004184AQ; and the chronic dosing phase, during which patients will receive an additional 48 weeks of SSP-004184AQ dosing. Two age groups will be studied: 6-\<12, and 12-\<18 years old. The study is designed to initially assess the pharmacokinetics and safety of SSP-004184AQ in older children (adolescents, 12-\<18 years old) and then if deemed safe, in younger children (6-\<12 years old).

COMPLETED
Deferasirox in Treating Iron Overload Caused By Blood Transfusions in Patients With Hematologic Malignancies
Description

RATIONALE: Deferasirox may remove excess iron from the body caused by blood transfusions. PURPOSE: This clinical trial studies deferasirox in treating iron overload caused by blood transfusions in patients with hematologic malignancies.

Conditions
Acute Undifferentiated LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Grade III Lymphomatoid GranulomatosisAdult Langerhans Cell HistiocytosisAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaContiguous Stage II Adult Burkitt LymphomaContiguous Stage II Adult Diffuse Large Cell LymphomaContiguous Stage II Adult Diffuse Mixed Cell LymphomaContiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaContiguous Stage II Adult Immunoblastic Large Cell LymphomaContiguous Stage II Adult Lymphoblastic LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Grade 3 Follicular LymphomaContiguous Stage II Mantle Cell LymphomaContiguous Stage II Marginal Zone LymphomaContiguous Stage II Small Lymphocytic LymphomaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaMast Cell LeukemiaMyelodysplastic Syndrome With Isolated Del(5q)Myelodysplastic/Myeloproliferative Neoplasm, UnclassifiableMyeloid/NK-cell Acute LeukemiaNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory AnemiaRefractory Multiple MyelomaSecondary Acute Myeloid LeukemiaSecondary MyelofibrosisSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Diffuse Mixed Cell LymphomaStage I Adult Diffuse Small Cleaved Cell LymphomaStage I Adult Hodgkin LymphomaStage I Adult Immunoblastic Large Cell LymphomaStage I Adult Lymphoblastic LymphomaStage I Adult T-cell Leukemia/LymphomaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Multiple MyelomaStage I Mycosis Fungoides/Sezary SyndromeStage I Small Lymphocytic LymphomaStage II Adult Hodgkin LymphomaStage II Adult T-cell Leukemia/LymphomaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage II Multiple MyelomaStage II Mycosis Fungoides/Sezary SyndromeStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-cell Leukemia/LymphomaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Mycosis Fungoides/Sezary SyndromeStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-cell Leukemia/LymphomaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Mycosis Fungoides/Sezary SyndromeStage IV Small Lymphocytic LymphomaTesticular LymphomaUntreated Adult Acute Lymphoblastic LeukemiaUntreated Adult Acute Myeloid LeukemiaWaldenstrom Macroglobulinemia
COMPLETED
High-Tc Susceptometer to Monitor Transfusional Iron Overload
Description

The proposed research project will continue the application and development of a new method (biomagnetic susceptometry) that measures magnetic fields to determine how much iron is in the liver. The amount of iron in the liver is the best indicator of the amount of iron in the whole body. Measuring the amount of iron in the body is important because either too much (iron overload) or too little iron (iron deficiency) can be harmful. At present, the most reliable way to measure the amount of iron in the liver is to remove a sample of the liver by biopsy, either by surgery or by using a needle which pierces the skin and liver. Iron stored in the liver can be magnetized to a small degree when placed in a magnetic field. In patients with iron overload, the investigators previous studies have shown that magnetic measurements of liver iron in patients with iron overload are quantitatively equivalent to biochemical determinations on tissue obtained by biopsy. In the past the investigators have developed a device to measure the amount of magnetization, which was called a SQUID (Superconducting QUantum Interference Device) susceptometer. This device was validated and in use for over 20 years. The safety, ease, rapidity and comfort of magnetic measurements make frequent, serial studies technically feasible and practically acceptable to patients. The investigators have now developed a new susceptometer, which uses very similar technology to the SQUID, but the investigators believe is more accurate and precise. This study aims to validate this new instrument. The investigators will do prospective, serial studies of the diagnosis and management of patients with iron overload, including thalassemia major (Cooley's anemia), sickle cell disease, aplastic anemia, myelodysplasia, hereditary hemochromatosis, and other disorders. Funding Source - FDA OOPD.

COMPLETED
Safety and Pharmacodynamic Study of an Oral Iron Chelator Given for 6 Months to Patients With Iron Overload
Description

The purpose of this research study is to evaluate the safety of two doses of FBS0701, a new oral iron chelator, and its effectiveness in clearing iron from the liver. FBS0701 is a medication taken by mouth that causes the body to get rid of iron. Iron chelators are used in patients with β-thalassemia and other forms of anemia who experience iron overload - iron increases in the body as a result of regularly required blood transfusions. Patients who qualify will be randomized to receive one of two doses of FBS0701 for up to 24 weeks (6 months) with a total study duration of up to 33 weeks. These patients will be eligible to participate in a dosing extension for up to 72 weeks. The maximum duration of dosing will be up to 96 weeks. The safety of patients will be monitored frequently during the study by physical exams, ECGs, and blood tests. To assess the amount of iron in the liver and heart, each patient must undergo 6 MRI scans during the study. Patients will not need to stay in the hospital for this study but will need to visit the outpatient clinic up to 28 times over the 96 week period. Patients currently taking an iron chelator will be required to stop for a total of up to 26 weeks. The results of this study will help to determine if FBS0701 may be effective as an iron chelator.

TERMINATED
Deferasirox for Treating Patients Who Have Undergone Allogeneic Stem Cell Transplant and Have Iron Overload
Description

RATIONALE: Low dose deferasirox may be safe and effective in treating patients who have undergone hematopoietic stem cell transplant and have iron overload. PURPOSE: This pilot clinical trial studies safety and tolerability of deferasirox in hematopoietic stem cell transplant recipients who have iron overload. Effect of low dose deferasirox on labile plasma iron is also examined.

Conditions
Iron OverloadAccelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Atypical Chronic Myeloid Leukemia, BCR-ABL NegativeBlastic Phase Chronic Myelogenous LeukemiaChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous Leukemiade Novo Myelodysplastic SyndromesDisseminated NeuroblastomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPoor Prognosis Metastatic Gestational Trophoblastic TumorPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent NeuroblastomaRecurrent Ovarian Epithelial CancerRecurrent Ovarian Germ Cell TumorRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSplenic Marginal Zone LymphomaStage I Multiple MyelomaStage II Multiple MyelomaStage II Ovarian Epithelial CancerStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Chronic Lymphocytic LeukemiaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Malignant Testicular Germ Cell TumorStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Ovarian Epithelial CancerStage III Small Lymphocytic LymphomaStage IIIA Breast CancerStage IIIB Breast CancerStage IIIC Breast CancerStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Breast CancerStage IV Chronic Lymphocytic LeukemiaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Ovarian Epithelial CancerStage IV Small Lymphocytic Lymphoma
COMPLETED
Genes Influencing Iron Overload State
Description

Iron overload, which can be defined operationally as too much iron in the body, develops as a consequence of too many blood transfusions given, or due to genetic defects hereditary hemochromatosis). Iron accumulates in several organs in the body, such as the heart, liver, endocrine glands (pancreas, thyroid, etc.), and spleen. Excessive iron can damage organs and may even cause death. Iron overload needs to be appropriately monitored and treated to avoid unnecessary morbidity and mortality. The present study, GENIOS, proposes to test prospectively the hypothesis that genetic modifiers influence the iron overload status of patients receiving transfusions. To test this hypothesis, the study will perform genetic studies to investigate possible genetic influences for iron accumulation in the body and will study iron accumulation not only in the liver, but also in the heart, pancreas, kidneys, and spleen. In addition: the study will investigate if these same genes have any role during treatment of iron overload, in other words, if certain genetic mutations will influence how iron exits the body. This study will also investigate how substances that are known to control the trafficking of iron in and out of the body and its damaging effects to the tissues (hepcidin and non transferrin-bound iron) are linked to the accumulation of iron in the heart and liver. Iron in the body will be measured by R2\*MRI and no liver biopsies will be required. Genetic studies will be done by specialized tests using peripheral blood DNA. Iron accumulates differently in different people and in different organs of the body. Some people accumulate iron faster than others, even when receiving the same number of blood transfusions

COMPLETED
Multi-Center Study of Iron Overload: Pilot Study
Description

The purpose of this study is to initiate pilot studies to demonstrate that a sufficient number of iron-overloaded thalassemia, SCD and DBA populations with similar duration of chronic transfusion, and age at start of transfusions would be available for a confirmatory study and to validate that proposed multicenter MRI and biochemical studies can be completed. The study will examine the hypothesis that a chronic inflammatory state in Sickle Cell Disease (SCD) leads to hepcidin- and cytokine-mediated iron withholding within the RES (reticuloendothelial system), lower plasma NTBI (non transferrin bound iron) levels, less distribution of iron to the heart in SCD.

COMPLETED
A Protocol to Allow Treatment With ICL670 for Patients With or at Risk of Life-threatening Complications of Transfusional Iron Overload Who Are Unable to Tolerate Other Iron Chelators Because of Documented Severe Toxicity
Description

The purpose of this open-label, non-comparative, multi-center protocol was to further evaluate safety and to provide treatment with ICL670 to patients who had or were at risk of life threatening complications due to transfusional iron overload with a documented inability to tolerate any of the commercially available iron chelators due to severe toxicity rendering continued therapy either impossible or hazardous. Patients who were also ineligible for all on-going registration trials with ICL670 were included in the study. In exceptional cases, patients with a degree of iron overload which was not immediately life-threatening and who were ineligible for the registration trials were also enrolled provided they had a well-documented, sound justification for alternative chelation therapy.

COMPLETED
Safety and Pharmacokinetic Study of Escalating Multiple Doses of an Iron Chelator in Patients With Iron Overload
Description

The purpose of this research study is to study the safety of increasing doses of FBS0701, and to see how quickly the study medication is absorbed and how quickly it disappears from the bloodstream. FBS0701 is a new, oral iron chelator - a medication taken by mouth that increases the body's elimination of iron. Iron chelators are used in patients who develop iron overload from their transfusions. Four increasing doses of FBS0701 will be tested during this study. The study will start with the lowest dose given to 4 patients (3 mg/kg/day. The next group of 4 patients will receive the next high dose (8mg/kg/day only after the results of the first 4 patients are examined and it is determined safe to continue. Participating patients will take the study medication for 7 days and be followed for 28 days after their last dose to determine if they have any reactions to the study medication - therefore a total of 35 days on study. Patients will need to give up to 17 blood samples over the screening period and first 15 days of the study (a total of about 9 tablespoons). Patients will not need to stay overnight in the clinic but will need to visit the clinic 10 times for screening and on-study visits over the 35 days. Patients currently taking an iron chelator will need to stop that treatment for up to 22 days (up to 5 days before they start the study and for 15 days during the study). The results of this study will be helpful in determining the safety of the drug and the best doses of FBS0701 to be used in the next study which will assess the effectiveness of this new iron chelator.

COMPLETED
Iron Overload in Pediatric Oncology Patients
Description

The purpose of this study is to evaluate for iron overload in pediatric oncology and transplant patients who have completed their treatment between one to ten years ago.

Conditions
TERMINATED
Clinical Importance of Treating Iron Overload in Sickle Cell Disease
Description

Hypothesis: The investigators suspect that significant degrees of iron overload in subjects with SCD result in decreased red cell survival, abnormal endothelial function and markedly dysregulated autonomic function. Furthermore, the investigators anticipate that the magnitude of these effects is proportional not only to the magnitude of total body iron stores but also to the duration of exposure to the high iron levels in tissues. Primary objective To determine if red cell survival as assessed by 51Cr red cell survival analysis, hemoglobin level, reticulocyte count, lactic acid dehydrogenase, and plasma hemoglobin in sickle cell patients is related to the degree of iron overload. Secondary objective(s) 1. Determine if the magnitude of endothelial-dependant vasodilation is related to The degree of iron overload. 2. Determine if the degree of change in cardiac beat to beat variability in response to hypoxic exposure or to cold exposure ("cold-face-test") is related the magnitude of iron overload. The primary measure of iron overload will be MRI determination of liver iron concentration.

COMPLETED
Observational Study of Iron Overload in Stem Cell Transplantation
Description

Recent retrospective studies have suggested that iron overload is a clinically important problem in patients undergoing ablative stem cell transplantation. However, these studies relied on serum ferritin as a surrogate of iron overload, which limits the conclusions that can be drawn from such analyses. Therefore, the investigators are conducting a prospective study to more rigorously examine the prevalence, mechanisms, and consequences of iron overload in this patient population.

COMPLETED
Combined Chelation Therapy in Patients With Transfusion Dependent Thalassemia and Iron Overload
Description

This is a pilot study looking at the safety and efficacy of giving combination chelation with deferasirox and deferoxamine. The hypothesis is that combination chelation is safe in decreasing overall iron in patients with thalassemia.

COMPLETED
Iron Overload in Patients Undergoing Donor Stem Cell Transplant
Description

RATIONALE: Learning about the effect of excess iron in the liver of patients undergoing donor stem cell transplant may help doctors plan treatment. PURPOSE: This study is investigating the effects of iron overload in patients undergoing donor stem cell transplant.

COMPLETED
Efficacy and Safety of Deferasirox in Non-transfusion Dependent Thalassemia Patients With Iron Overload and a One Year Open-label Extension Study
Description

CICL670A2209: This study will evaluate the safety and efficacy of deferasirox in non-transfusion dependent thalassemia patients with iron overload. Patients will be treated either with active treatment (deferasirox) or placebo for 12 months (core study phase). Patients who complete the core study phase will be offered to continue their study with the active treatment (deferasirox) in a 12 months extension phase. During the core and extension, the effects of treatment on iron overload in the liver will be evaluated using magnetic resonance imaging (MRI) assessments. CICL670A2209E1: A one-year open-label extension to a randomized, double-blind, placebo-controlled, phase II study to evaluate efficacy and safety of deferasirox in non-transfusion dependent thalassemia patients with iron overload (Thalassa).

COMPLETED
Iron Overload in Stem Cell Transplant Recipients
Description

The goal of this study is to examine the impact of iron overload in patients undergoing a bone marrow transplant. We believe that the iron status in these patients is associated with complications for transplant survivors. We will examine the iron status in these patients by MRI and by screening for mutations in genes known to cause iron overload. We will also determine the levels of hepcidin (a hormone produced in the liver that appears to regulate iron homeostasis) from blood and urine.

Conditions
COMPLETED
Oral Nifedipine to Treat Iron Overload
Description

This study will determine if nifedipine, a medication used to treat high blood pressure, can help treat iron overload, a condition in which the body contains too much iron. Iron overload can be caused by the body's inability to regulate iron or by medical treatments, such as multiple blood transfusions. Over time, it can cause problems with the liver, heart and glands. Treatments include reducing iron intake in the diet or removing the excess iron using medical therapies. Recently, nifedipine was found to cause iron loss in the urine of small animals. This study will see if the drug can increase the removal of iron into the urine in humans as well. People 18 years of age and older with iron overload may be eligible for this study to undergo the following procedures: Study Day 1 Participants come to the NIH Clinical Center for a medical history, physical examination, blood and urine tests, electrocardiogram (EKG) and echocardiogram (heart ultrasound). Study Day 2 Participants will collect three urine samples: one is collected over 4 hours, followed by a second over 4 hours. Both of these samples are collected at NIH in the outpatient day hospital. At home, a third urine sample will be collected over 16 hours. For 1 week before the collections, participants are asked not to drink tea or eat foods high in Vitamin C or iron. They are also asked not to take any iron chelating medications. Study Day 3 Participants repeat the same urine collections as on day 2. They collect a 4-hour urine sample at the outpatient day hospital at NIH. They will then take a 20-mg tablet of nifedipine, and remain in the clinic 4 hours for blood pressure monitoring. A second urine sample during this time. They then return home to collect the final 16-hour sample, which they bring to the clinic the following day. Again, they are instructed to avoid a diet high in vitamin C, iron rich foods, tea, and to avoid taking any iron chelating medications. ...