13 Clinical Trials for Various Conditions
This phase I/II trial studies the side effects and best dose of alemtuzumab when given together with combination chemotherapy and to see how well it works in treating patients with untreated acute lymphoblastic leukemia. Monoclonal antibodies, such as alemtuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy also work in different ways to kill cancer cells or stop them from growing. Giving alemtuzumab together with combination chemotherapy may be a better way to block cancer growth.
RATIONALE: Monoclonal antibodies, such as epratuzumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or carry cancer-killing substances to them. Drugs used in chemotherapy, such as cytarabine and clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving epratuzumab together with cytarabine and clofarabine may kill more cancer cells. PURPOSE: This phase II trial is studying the side effects and how well giving epratuzumab together with cytarabine and clofarabine works in treating patients with relapsed or refractory acute lymphoblastic leukemia.
RATIONALE: Drugs used in chemotherapy, such as cytarabine and clofarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. PURPOSE: This phase II trial is studying how well giving cytarabine together with clofarabine works in treating patients with relapsed or refractory acute lymphoblastic leukemia.
RATIONALE: A peripheral stem cell transplant or an umbilical cord blood transplant from a donor may be able to replace blood-forming cells that were destroyed by chemotherapy or radiation therapy. Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) after the transplant may help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells can make an immune response against the body's normal cells. Methotrexate, cyclosporine, tacrolimus, or methylprednisolone may stop this from happening. PURPOSE: This clinical trial is studying how well a donor stem cell transplant or donor white blood cell infusions work in treating patients with hematologic cancer.
RATIONALE: Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy), and giving the drugs in different combinations may kill more cancer cells. PURPOSE: This phase II trial is studying how well combination chemotherapy works in treating patients with newly diagnosed acute lymphoblastic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of 506U78 in treating patients who have recurrent or refractory acute lymphocytic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of arsenic trioxide in treating patients who have relapsed or refractory acute lymphoblastic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of fludarabine, carboplatin, and topotecan in treating patients who have relapsed or refractory acute leukemia or advanced myelodysplastic syndrome.
RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by the chemotherapy or radiation therapy used to kill tumor cells. Sometimes the transplanted cells are rejected by the body's normal tissues. Transplanting donated cells that have been treated with psoralen may prevent this from happening. PURPOSE: Phase I trial to study the effectiveness of chemotherapy, radiation therapy, and psoralen-treated donor cells in treating patients who are undergoing peripheral stem cell transplantation for hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy in treating patients who have untreated acute lymphoblastic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy with or without bone marrow transplantation in treating patients who have acute lymphocytic leukemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining more than one drug may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of topotecan and etoposide in treating patients who have recurrent or refractory leukemia.
This phase II trial is studying the side effects of giving combination chemotherapy together with or without donor stem cell transplant and to see how well it works in treating patients with acute lymphoblastic leukemia. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect).