39 Clinical Trials for Various Conditions
This is a study to evaluate the safety of idelalisib as post-transplantation maintenance in patients with B cell hematologic malignancies undergoing a allogeneic hematopoietic stem cell transplant (HSCT). Safety will be evaluated through the assessment of cytopenias, effect on donor chimerism, effect on the incidence and severity of acute graft versus host disease, and gastro-intestinal tolerance.
The goal of this clinical research study is to learn if researchers can successfully and safely give HSCT patients an infusion of white blood cells (called T-cells) that have been genetically changed. The process of changing the DNA (the genetic material in cells) of these T-cells is called "gene transfer." Researchers want to learn if these genetically-changed T-cells are effective in attacking cancer cells in patients with advanced B-cell lymphoma or leukemia, after they have received standard allogeneic HSCT. Researchers want to find out the highest dose of these special T-cells that can be given safely to leukemia and lymphoma patients. Researchers also want to learn how long the changed T-cells stay in your body, and if adding them to standard transplant can improve how you respond to treatment.
This clinical trial is studying how well giving fludarabine phosphate and melphalan together with total-body irradiation followed by donor stem cell transplant works in treating patients with hematologic cancer or bone marrow failure disorders. Giving low doses of chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells or abnormal cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect)
RATIONALE: Cyclosporine eye drops may prevent graft-versus-host disease of the eye in patients who have undergone donor stem cell transplant for hematologic cancer or bone marrow failure disorder. PURPOSE: This randomized phase I trial is studying how well cyclosporine eye drops work in preventing graft-versus-host disease of the eye in patients who have undergone donor stem cell transplant for hematologic cancer or bone marrow failure disorder.
RATIONALE: Studying samples of blood in the laboratory from patients who have undergone a donor bone marrow transplant may help doctors learn more about changes that occur in DNA and identify biomarkers related to graft-versus-host disease. It may also help doctors predict how patients will respond to a donor bone marrow transplant. PURPOSE: This laboratory study is looking at early detection of graft-versus-host disease in patients undergoing a donor bone marrow transplant.
RATIONALE: Giving high doses of chemotherapy drugs, such as busulfan and cyclophosphamide, before a donor bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclosporine, methylprednisolone, and methotrexate after transplant may stop this from happening. PURPOSE: This clinical trial studies high-dose busulfan and high-dose cyclophosphamide followed by donor bone marrow transplant in treating patients with leukemia, myelodysplastic syndrome, multiple myeloma, or recurrent Hodgkin or Non-Hodgkin lymphoma.
RATIONALE: Beclomethasone dipropionate may be effective in preventing acute graft-versus-host disease in patients undergoing a stem cell transplant for hematologic cancer. PURPOSE: This randomized phase II trial is studying how well beclomethasone dipropionate works in preventing acute graft-versus-host disease in patients undergoing a donor stem cell transplant for hematologic cancer.
RATIONALE: Giving chemotherapy before a donor peripheral stem cell transplant or bone marrow transplant using stem cells from a brother or sister that closely match the patient's stem cells, helps stop the growth of cancer or abnormal cells. It also helps stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving colony-stimulating factors, such as G-CSF, to the donor helps the stem cells move from the bone marrow to the blood so they can be collected and stored. Giving methotrexate and cyclosporine before and after transplant may stop this from happening. It is not yet known whether a donor peripheral stem cell transplant is more effective than a donor bone marrow transplant in treating hematologic cancers or other diseases. PURPOSE: This randomized phase III trial is studying filgrastim-mobilized sibling donor peripheral stem cell transplant to see how well it works compared with sibling donor bone marrow transplant in treating patients with hematologic cancers or other diseases.
RATIONALE: Giving low doses of chemotherapy and total-body irradiation before a donor umbilical cord blood stem cell transplant helps stop the growth of cancer or abnormal cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer or abnormal cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil before the transplant may stop this from happening. PURPOSE: This clinical trial is studying how well umbilical cord blood stem cell transplant works in treating patients with hematologic cancer or other disease.
RATIONALE: Questionnaires that measure coping may improve the ability to plan supportive care for patients undergoing donor bone marrow transplant. PURPOSE: This clinical trial is studying coping in patients who are undergoing a donor bone marrow transplant.
RATIONALE: Questionnaires that measure quality-of-life may improve the health care team's ability to plan supportive care for patients undergoing donor bone marrow transplantation. PURPOSE: This clinical trial is studying quality of life in patients who are undergoing donor bone marrow transplantation.
RATIONALE: Giving chemotherapy and total-body irradiation before a donor bone marrow transplant or peripheral blood stem cell transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When certain stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing the T cells from the donor cells before transplant may stop this from happening. PURPOSE: This randomized phase III trial is studying donor bone marrow that is treated in the laboratory using two different devices to compare how well they work in treating patients who are undergoing a donor bone marrow transplant for hematologic cancer.
RATIONALE: Giving chemotherapy drugs and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Giving colony-stimulating factors, such as G-CSF, to the donor helps the stem cells move from the bone marrow to the blood so they can be collected and stored. PURPOSE: This clinical trial is studying how well a G-CSF-treated donor bone marrow transplant works in treating patients with hematologic cancer or noncancer.
RATIONALE: Giving chemotherapy before a donor bone marrow transplant helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving cyclophosphamide, mycophenolate mofetil, or tacrolimus after transplant may stop this from happening. PURPOSE: This clinical trial is studying how well giving combination chemotherapy together with tacrolimus and mycophenolate mofetil works in treating patients who are undergoing a donor bone marrow transplant for hematologic cancer.
RATIONALE: Giving low doses of chemotherapy, such as fludarabine and cyclophosphamide, and radiation therapy before a donor bone marrow transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving fludarabine and cyclophosphamide together with total-body irradiation works in treating patients who are undergoing a donor bone marrow transplant for hematologic cancer.
This phase II trial studies how well giving fludarabine phosphate, cyclophosphamide, tacrolimus, mycophenolate mofetil and total-body irradiation together with a donor bone marrow transplant works in treating patients with high-risk hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate and cyclophosphamide, and total-body irradiation before a donor bone marrow transplant helps stop the growth of cancer cells by stopping them from dividing or killing them. Giving cyclophosphamide after transplant may also stop the patient's immune system from rejecting the donor's bone marrow stem cells. The donated stem cells may replace the patient's immune system cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving tacrolimus and mycophenolate mofetil after the transplant may stop this from happening
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of cyclophosphamide plus bone marrow transplantation in treating patients who have hematologic cancer.
RATIONALE: Radiation therapy uses high-energy x-rays to damage cancer cells. Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Combining chemotherapy with bone marrow transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of bone marrow transplantation in treating patients who have hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining bone marrow transplantation with chemotherapy may allow doctors to give higher doses of chemotherapy and kill more tumor cells. PURPOSE: This phase II trial is studying the side effects of giving a bone marrow transplant together with chemotherapy and to see how well it works in treating patients with refractory non-Hodgkin's lymphoma, Hodgkin's lymphoma, or multiple myeloma.
RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.
RATIONALE: Collecting and storing samples of tissue, blood, and body fluid from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing blood and tissue samples from patients being evaluated for hematologic cancer.
RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.
RATIONALE: Giving low doses of chemotherapy, such as fludarabine and busulfan, before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects of giving busulfan and fludarabine together with total-body irradiation and to see how well they work in treating patients who are undergoing a donor stem cell transplant for hematologic cancer.
RATIONALE: Drugs used in chemotherapy use different ways to stop cancer cells from dividing so they stop growing or die. Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy used to kill cancer cells. PURPOSE: Phase II trial to study the effectiveness of combination chemotherapy followed by peripheral stem cell transplantation in treating patients who have hematologic cancer or aplastic anemia.
RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase I trial to study the effectiveness of decitabine in treating patients with stage III or stage IV melanoma or other advanced cancer that has not responded to previous therapy.
RATIONALE: Interleukin-2 may stimulate a person's white blood cells to kill metastatic cancer cells. Interferon alfa may interfere with the growth of the cancer cells. Combining interleukin-2 and interferon alfa may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of interleukin-2 plus interferon alfa in treating adults with metastatic cancer.
This randomized phase I trial studies the side effects of vaccine therapy in preventing cytomegalovirus (CMV) infection in patients with hematological malignancies undergoing donor stem cell transplant. Vaccines made from a tetanus-CMV peptide or antigen may help the body build an effective immune response and prevent or delay the recurrence of CMV infection in patients undergoing donor stem cell transplant for hematological malignancies.
RATIONALE: Infection prophylaxis and management may help prevent cytomegalovirus (CMV) infection caused by a stem cell transplant. PURPOSE:This clinical trial studies infection prophylaxis and management in treating cytomegalovirus infection in patients with hematologic malignancies previously treated with donor stem cell transplant.
This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer
RATIONALE: The influenza vaccine may help prevent flu in patients who have undergone stem cell transplant. PURPOSE: This clinical trial is studying how well the influenza vaccine works in preventing flu in patients who have undergone stem cell transplant and in healthy volunteers.