Treatment Trials

27 Clinical Trials for Various Conditions

Focus your search

TERMINATED
SC-002 in Small Cell Lung Cancer and Large Cell Neuroendocrine Carcinoma
Description

This is a Phase 1a/1b study of SC-002 in patients with relapsed small cell lung cancer (SCLC) or large cell neuroendocrine carcinoma (LCNEC). SC-002 is an antibody-drug conjugate (ADC) comprised of a monoclonal antibody linked to a potent chemotherapy. The purpose of this study is to assess the safety and tolerability of SC-002 at different dose levels, to determine the highest dose of SC-002 that can be given to patients with SCLC or LCNEC, to evaluate the side effects of SC-002, and to assess the anti-cancer activity of SC-002.

COMPLETED
Next Generation Sequencing-Based Stratification of Front Line Treatment of HighGrade Neuroendocrine Carcinoma
Description

PRECISION-NEC is a single-center, open-label, pilot feasibility study of molecularly defined subtypes of metastatic high-grade neuroendocrine carcinoma (HG-NEC). The hypothesis is that HG-NEC (excluding small cell carcinoma) can be segregated based on mutational analysis and that next generation sequencing (NGS)-based assignment of therapy is feasible and will potentially improve the outcomes.

ACTIVE_NOT_RECRUITING
Testing the Combination of XL184 (Cabozantinib), Nivolumab, and Ipilimumab for Poorly Differentiated Neuroendocrine Tumors
Description

This phase II trial studies how well the combination of XL184 (cabozantinib), nivolumab, and ipilimumab work in treating patients with poorly differentiated neuroendocrine tumors (i.e., neuroendocrine tumor that does not look like the normal tissue it arose from). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib, nivolumab and ipilimumab may shrink the cancer.

NOT_YET_RECRUITING
Radiation Combined With BIspecific T-Cell Engager in DLL3 Expressing Tumors
Description

Phase I study to examine safety of the addition of concurrent tarlatamab with standard palliative and consolidative RT regimens , with a main cohort of N=20-24 patients with extracranial anatomic radiation sites. I) After lead in of 10 patients demonstrating safety of treatment, allow for expansion to cranial sites of disease (N=6-10) with continued enrollment in main cohort II) If toxicity criteria is not met in concurrent RT tarlatamab cohort, we will continue with sequential RT, either A) delivered within 7 days prior to cycle 1 day 1, or B) delivered during cycle 1 -2 but with pre- and post-RT washout of 7 days with no drug during RT, to examine safety in a temporally spaced setting. III) If sequential tarlatamab and radiation is not deemed safe, we would allow for continued enrollment to assess efficacy of drug sans radiation treatment, enriching for tumors not of small cell lung cancer histology and allowing for patients without sites amenable to RT. A nested phase II study will attempt to assess for ORR and safety of study intervention amongst tumors not of small cell lung cancer histology.

RECRUITING
Study of 225Ac-ABD147 to Establish Optimal Dose in Patients with SCLC and LCNEC of the Lung That Previously Received Platinum-based Chemotherapy
Description

The study has 2 parts, Phase 1a and Phase 1b. The goal of Phase 1a is to gather safety, PK and initial efficacy data for 225Ac-ABD147 to better understand best doses for patients with small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC) of the lung following platinum-based chemotherapy. An initial group of patients will also be given an experimental imaging agent called 111In-ABD147 to help understand where ABD147 goes in the body. The goal of Phase 1b is to gather additional safety and efficacy data on 225Ac-ABD147 to determine the best dose and to understand how those doses affect the same types of patients' cancers explored enrolled in Phase 1a.

RECRUITING
Enasidenib in IDH2-Mutated Malignant Sinonasal and Skull Base Tumors
Description

Background: Cancers of the nasal cavity or skull base are rare. They often are not diagnosed until they are at an advanced stage, and they often spread to other parts of the body. These cancers may have mutations in a gene called IDH2. Researchers want to find out if a drug (enasidenib) that targets the IDH2 mutation can help people with these cancers. Objective: To test enasidenib in people with cancers of the nasal cavity or skull base. Eligibility: People aged 18 years and older with rare cancers of the nasal cavity or the base of the skull. Their cancer must have an IDH2 gene mutation, and it must have recurred locally or spread to other parts of the body. These cancers can include sinonasal undifferentiated carcinoma; olfactory neuroblastoma; sinonasal large-cell neuroendocrine carcinoma; poorly differentiated sinonasal adenocarcinoma; or chondrosarcoma. Design: Participants will be screened. They will have a physical exam with blood and urine tests and tests of their heart function. They will have imaging scans of their brain, skull base, neck, chest, abdomen, and pelvis. A sample of tumor tissue will be collected. Enasidenib is a tablet taken by mouth with a glass of water. Participants will take the drug once a day, every day, in 28-day cycles. They will not have resting periods between cycles. Participants will visit the clinic on the first day of each cycle to receive the tablets they will need to take at home until the beginning of the next cycle. They will keep a diary to record the time of each dose they take. Participants may remain in the study as long as the drug is helping them....

RECRUITING
DLL3-Directed Chimeric Antigen Receptor T-cells in Subjects With Extensive Stage Small Cell Lung Cancer
Description

This is a phase 1, first-in-human, open-label, multicenter, dose escalation and expansion study of DLL3-targeted chimeric antigen receptor T-cells in subjects with extensive stage small cell lung cancer or large cell neuroendocrine lung cancer.

RECRUITING
Targeted Therapy With CDK4/6 Inhibitors in Chemo-Refractory, Rb Wild-Type Extensive SCLC
Description

The purpose of this study is to: * Test how well the study medicine Abemaciclib, a CDK4/6 inhibitor, works to shrink lung cancer tumors in the body. * Test the safety of Abemaciclib when given to participants with small cell lung cancer (SCLC), large cell neuroendocrine lung cancer, extrapulmonary small cell cancers and other high grade neuroendocrine cancers of the lung. Specifically, this study is looking at SCLC, large cell neuroendocrine lung cancer, extrapulmonary small cell cancers and other high grade neuroendocrine cancers of the lung that have not responded to treatment (refractory) or come back after treatment with chemotherapy (relapsed) as the study medication has been shown to be effective any time the disease relapses not just in the first few months.

WITHDRAWN
Pembrolizumab With Chemotherapy in Metastatic or Unresectable High Grade Gastroenteropancreatic or Lung Neuroendocrine Carcinoma
Description

The purpose of this study is to test the efficacy, safety, and tolerability of the combination of chemotherapy treatment, which could be either Cisplatin or carboplatin and etoposide, and the research study drug, Pembrolizumab (also known as MK-3475) in patients with high grade neuroendocrine carcinomas of the gastroenteropancreatic system or lung who are chemotherapy naïve. The chemotherapy treatment you receive will be either Cisplatin or carboplatin and etoposide. the participant's doctor will discuss this choice with you and determined which chemotherapy treatment is best for you.

ACTIVE_NOT_RECRUITING
Nivolumab and Temozolomide in Treating Patients with Recurrent or Refractory Small-Cell Lung Cancer or Advanced Neuroendocrine Cancer
Description

This phase II trial studies how well nivolumab and temozolomide work in treating patients with small-cell lung cancer that has come back or does not respond to treatment, or neuroendocrine cancer that has spread to other places in the body. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab and temozolomide may work better in treating patients with small-cell lung cancer and neuroendocrine cancer.

TERMINATED
Rovalpituzumab Tesirine in Delta-Like Protein 3-Expressing Advanced Solid Tumors
Description

The primary objective of this study is to assess the safety and tolerability of rovalpituzumab tesirine in subjects with specific delta-like protein 3-expressing advanced solid tumors.

RECRUITING
Genomic and Methylation Markers in SCLC and LCNEC for Chemo-Immunotherapy Resistance Prediction (STRATUS)
Description

The goal of this observational study is to understand how genomic and epigenetic factors contribute to resistance against chemo-immunotherapy in adults diagnosed with extensive-stage small cell lung cancer (ES-SCLC) or metastatic large cell neuroendocrine carcinoma (LCNEC). Both ES-SCLC and LCNEC are aggressive forms of lung cancer with limited treatment options and poor prognosis. While initial responses to chemo-immunotherapy are often promising, most patients develop resistance within a few months, resulting in disease progression and limited survival. This study seeks to explore the molecular and cellular changes that drive resistance, providing insights that could guide more personalized and effective treatment strategies in the future. The study focuses on identifying genomic and methylation signatures, as well as analyzing circulating tumor cells (CTCs) and tumor DNA (ctDNA), to better understand the mechanisms of resistance. By collecting and analyzing these biomarkers over time, researchers aim to identify patterns that distinguish patients who benefit long-term from therapy from those who experience early resistance. These findings may pave the way for new diagnostic tools and therapies to predict and overcome resistance to chemo-immunotherapy. The main questions this study seeks to answer are: Are there specific genomic or methylation patterns that predict resistance to chemo-immunotherapy in ES-SCLC and LCNEC? How are circulating tumor cells (CTCs) and tumor DNA (ctDNA) associated with disease progression, treatment response, and survival? What molecular differences exist between patients who respond long-term and those who develop resistance early in their treatment? Participants will: Provide blood and tumor tissue samples before treatment to establish baseline molecular profiles. Undergo follow-up visits every 9 weeks during treatment, where additional blood samples and imaging tests will be collected to monitor disease progression and treatment response. Optionally provide tissue samples through re-biopsy if the disease progresses, enabling researchers to compare changes in tumor biology over time. All blood and tissue samples will be de-identified and securely stored for genomic and epigenetic analyses. Blood samples will be examined for circulating tumor cells and tumor DNA, while tumor tissue samples will undergo in-depth genomic and methylation profiling. Researchers will use advanced molecular and bioinformatics techniques to uncover specific patterns associated with resistance, aiming to improve current treatment strategies and develop more precise therapies. The study will analyze data from patients over three years, encompassing various stages of treatment and disease progression. By examining longitudinal samples, the study aims to capture the dynamic changes that occur in the tumor microenvironment and how these relate to treatment outcomes. This research is particularly important because current treatment options for ES-SCLC and LCNEC are limited, and there are no established methods to predict which patients will respond to chemo-immunotherapy. Identifying biomarkers of resistance could transform clinical care, allowing oncologists to tailor treatments to individual patients' molecular profiles and improve survival outcomes. Ultimately, the findings from this study could lead to the development of new biomarkers for resistance, improve early detection of treatment failure, and provide the foundation for novel therapies targeting resistant cancer cells. By addressing a critical gap in the understanding of resistance mechanisms, the STRATUS trial has the potential to significantly advance the field of personalized oncology.

RECRUITING
Lurbinectedin With or Without Avelumab in Small Cell Carcinoma of the Bladder (LASER)
Description

Background: Small cell carcinoma of the bladder (SCCB) and other high-grade neuroendocrine tumors (HGNET) of the urinary tract are rare but aggressive cancers. Average survival for people diagnosed with SCCB or HGNET is about 1 year. Lurbinectedin and avelumab are drugs that are approved to treat other cancers. Researchers want to see if these drugs can help people with SCCB or HGNET. Objective: To test lurbinectedin with or without avelumab in people with SCCB or HGNET. Eligibility: Adults aged 18 years and older with SCBB or HGNET that returned and spread after treatment. Design: Participants will be screened. They will have a physical exam. They will have blood tests and imaging scans. They may need to have a new biopsy: A small needle will be used to collect a tissue sample from the tumor. Both study drugs are given through a tube attached to a needle inserted into a vein. If participants have already received a drug like avelumab they will receive only lurbinectedin. If patients have not been previously treated with a drug like avelumab they will receive both lurbinectedin and avelumab. All participants will receive their treatment once every 3 weeks for up to 10 years. They will also receive other drugs to relieve adverse effects. Biopsies, blood tests, and imaging scans will be repeated during some study visits. Participants may also have urine tests and tests of their heart function. Participants may remain in the study as long as the treatment is helping them. If they stop treatment, they will have safety visits 14, 30, and 90 days after their last dose. Additional follow-up visits will continue 5 to 10 years.

RECRUITING
A Study of Peluntamig (PT217) in Patients with Neuroendocrine Carcinomas Expressing DLL3 (the SKYBRIDGE Study)
Description

This is a first-in-human, Phase 1/2, open-label, dose escalation, dose expansion and combination study designed to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy of Peluntamig (PT217) as a monotherapy and in combination with chemotherapy.

WITHDRAWN
Phase I/II Trial of Rhenium 188-P2045 in Small Cell Lung Cancer and Other Advanced Neuroendocrine Carcinomas
Description

There are two parts to this trial. The first study will evaluate increasing doses of Re188 P2045 in patients with advanced small cell lung cancer that has recurred after initial therapy or in patients with other advanced neuroendocrine cancers that have progressed after therapy. Re188 P2045 is designed to attach to type 2 somatostatin receptors that are frequently expressed in those cancers and then the radioactivity from Re188 will kill the cancer cell. Only patients who have cancers that can be seen when Tc99 P2045 is administered (also seeks out the SSTR2, but Tc99 images, but does not treat the cells) will be treated. Therefore, this approach maximizes the possibility that patients will benefit from treatment in that only those who have cancers that have the target will undergo treatment. The primary purpose of this study will be to determine the highest dose of Re188 P2045 that can be safely administered. The second study will open after the conclusion of the first. Patients will first undergo the scan with Tc99 P2045 and then be treated with topotecan for three days. Topotecan is a standard chemotherapy drug that is approved for second line therapy for small cell and frequently used for other neuroendocrine cancers. Following that, patients will then be re-evaluated with the Tc99 P2045 scan and if it demonstrates that the tumor is positive for SSTR2, then patients will receive Re188 P2045. The goal of this study is to determine the highest dose of Re188 P2045 that can be safely administered after topotecan as well as to determine if topotecan will increase the chance that the tumor will express SSTR2.

RECRUITING
A UGT1A1 Genotype-Directed Study of Belinostat Pharmacokinetics and Toxicity
Description

Background: High-grade neuroendocrine carcinomas (HGNEC) are cancers that develop in different parts of the body, including the digestive tract, genitals, neck, and head. One drug (belinostat), combined with 2 other drugs (etoposide and cisplatin), is approved to treat HGNEC. But some people may have a gene variant that affects how quickly their body gets rid of the drug; these people may do better with different dosages of belinostat. Objective: To test higher or lower doses of belinostat based on gene variants in people with HGNEC. Eligibility: People aged 18 years and older with HGNEC. Design: Participants will be screened. They will have a physical exam with blood tests. Some blood will be used for genetic testing. They will have imaging scans and a test of their heart function. Samples of tumor tissue may be collected. All 3 study drugs (belinostat, etoposide, cisplatin) are given through a tube attached to a needle inserted into a vein. Treatment will be given in 21-day cycles. For cycles 1 through 6: Participants will come to the clinic for the first 4 days. They will be given all 3 drugs. Imaging scans and other tests will be repeated. Each visit will last 4 to 8 hours. After cycle 6: Participants may continue treatment with belinostat alone. They will come to the clinic for the first 3 days of each cycle. They may continue treatment for up to 5 years if the drug is helping them. Participants will have a follow-up visit 30 days after their last dose of belinostat. Then they will receive follow-up visits by phone or email every 3 to 6 months.

ACTIVE_NOT_RECRUITING
Stereotactic Body Radiation Therapy with or Without Nivolumab in Treating Patients with Stage I-IIA or Recurrent Non-small Cell Lung Cancer
Description

This phase II trial studies how well stereotactic body radiation therapy with or without nivolumab works in treating patients with stage I-IIA non-small cell lung cancer or cancer that has come back. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method can kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving stereotactic body radiation therapy and nivolumab may work better at treating non-small cell lung cancer.

COMPLETED
Cisplatin and Etoposide With or Without Veliparib in Treating Patients With Extensive Stage Small Cell Lung Cancer
Description

This randomized phase I/II trial studies the side effects and best dose of veliparib when given together with or without cisplatin and etoposide and to see how well they work in treating patients with extensive stage small cell lung cancer or large cell neuroendocrine non-small cell lung cancer that has spread to other parts of the body. Drugs used in chemotherapy, such as cisplatin and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cisplatin and etoposide with or without veliparib may work better in treating patients with extensive stage small cell lung cancer or metastatic large cell neuroendocrine non-small cell lung cancer.

COMPLETED
Lung Cancer STARS Trial - STARS Revised Clinical Trial Protocol: Stereotactic Ablative Radiotherapy (SABR) in Stage I Non-small Cell Lung Cancer Patients Who Can Undergo Lobectomy
Description

The goal of this clinical research study is to evaluate the outcome of a standard radiation treatment called stereotactic radiotherapy (SRT) for NSCLC. Specifically, researchers want to learn if standard SRT has as good of an outcome at 3 years after the procedure. The safety of the study treatment will also be analyzed.

Conditions
RECRUITING
Study of Oral MRT-2359 in Selected Cancer Patients
Description

This Phase 1/2, open-label, multicenter study is conducted in patients with previously treated selected solid tumors, including non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC), high-grade neuroendocrine cancer of any primary site, diffuse large B-cell lymphoma (DLBCL), and tumors with L-MYC or N-MYC amplification. Patients receive escalating doses of a GSPT1 molecular glue degrader MRT-2359 to determine safety, tolerability, maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D) of MRT-2359. Once the MTD and/or RP2D is identified, additional patients enroll to Phase 2 study, which includes molecular biomarkers stratification or selection, namely expression or amplification of L-MYC and N-MYC genes, hormone receptor positive (HR)-positive, human epidermal growth factor 2 (HER2)-negative breast cancer and prostate cancer.

UNKNOWN
Safety Study of Seneca Valley Virus in Patients With Solid Tumors With Neuroendocrine Features
Description

The primary purpose of the study is to determine if Seneca Valley Virus may be administered safely to patients with certain types of advanced cancer.

ACTIVE_NOT_RECRUITING
Basket Study of Entrectinib (RXDX-101) for the Treatment of Patients With Solid Tumors Harboring NTRK 1/2/3 (Trk A/B/C), ROS1, or ALK Gene Rearrangements (Fusions)
Description

This is an open-label, multicenter, global Phase 2 basket study of entrectinib (RXDX-101) for the treatment of patients with solid tumors that harbor an NTRK1/2/3, ROS1, or ALK gene fusion. Patients will be assigned to different baskets according to tumor type and gene fusion.

TERMINATED
Indium In 111 Pentetreotide in Treating Patients With Refractory Cancer
Description

RATIONALE: Radiation therapy uses high-energy x-rays and other sources to damage tumor cells. Giving radiation therapy in different ways may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of indium In 111 pentetreotide in treating patients who have refractory cancer.

COMPLETED
Study to Assess Safety, Pharmacokinetics, and Efficacy of Oral CC-223 for Patients With Advanced Solid Tumors, Non-Hodgkin Lymphoma or Multiple Myeloma
Description

The main purpose of this first human study with CC-223 is to assess the safety and action of a new class of experimental drug (dual mTOR inhibitors) in patients with advanced tumors unresponsive to standard therapies and to determine the appropriate dose and tumor type for later-stage clinical trials.