65 Clinical Trials for Various Conditions
Clofarabine (injection) is approved by the Food and Drug Administration (FDA) for the treatment of pediatric patients 1 to 21 years old with relapsed acute lymphoblastic leukemia (ALL) who have had at least 2 prior treatment regimens. The purpose of this study is to determine whether Clofarabine is safe and effective in the treatment of Acute Myelogenous Leukemia (AML.)
Clofarabine (injection) is approved by the Food and Drug Administration (FDA) for the treatment of pediatric patients 1 to 21 years old with relapsed acute lymphoblastic leukemia (ALL) who have had at least 2 prior treatment regimens. This research study of clofarabine will be used for advanced cancer in persons in which drugs are no longer effective or no reliable effective treatment is available. The purpose of this study is to find the answers to the following research questions: 1. What is the largest dose of clofarabine that can be safely administered as an IV infusion (over at least 2 hours) once a week for 3 weeks (days 1, 8 and 15) followed by 1 week of rest and repeated every 28 days? 2. What are the side effects of clofarabine when given on this schedule? 3. How much clofarabine is in the blood at specific times after administration and how does the body get rid of the drug? Once the MTD/RP2D is established, patients will be enrolled at the MTD/RP2D regardless of the PK data with cardiac assessments done every other cycle. 4. Will clofarabine help treat a specific cancer?
This is a non-therapeutic study. Pediatric AML patients undergoing HCT with a myeloablative preparative regimen may be enrolled. Subjects can be enrolled 10-40 days prior to HCT. Three samples for MRD (measured by WT1 PCR and flow cytometry) will be collected from peripheral blood and bone marrow: 1) pre-HCT (\<3 weeks prior to starting the preparative regimen), 2) day 42 +/- 14 days post HCT (early post-engraftment), and 3) day 100 (+/-20 days) post HCT. For two years after transplant, the subject's follow-up data will be collected using the Research Level Forms in the CIBMTR Forms Net internet data entry system. The main objective is to determine whether there is any association between level of pre-transplant and post-transplant bone marrow MRD using WT1 and flow cytometry with 2-year event-free-survival, and to estimate the strength of that association in terms of the predictive accuracy of MRD. The investigators hypothesize that measurable MRD at either time point will be associated with decreased 2-year event-free survival.
The purpose of this study is to provide data on the activity of a standard daunorubicin, cytarabine, and etoposide (ADE) induction plus epigenetic priming with decitabine as assessed by standard measures of complete remission (CR), leukemia free survival (LFS) and overall survival (OS), as well as, on minimal residual disease (MRD). It will also provide necessary data on the safety and Pharmacokinetics (PK) of decitabine in pediatric patients that is currently unavailable.
The primary objectives of this study are to identify what outcomes related to the management of neutropenia are most important to children with AML and their caregivers. Patients who have completed treatment for AML and their caregivers will be interviewed in order to better understand the impact of neutropenia management on children with AML and their families. The primary outcome of these interviews is to identify patient-centered outcomes related to neutropenia management to include in a subsequent comparative-effectiveness analysis. Investigators will use these data to develop a structured survey for administration to prospectively identified patients in subsequent studies.
Treatment for pediatric acute myeloid leukemia (AML) involves intensive chemotherapy regimens that result in periods of profound neutropenia leaving patients susceptible to severe infectious complications. Infectious complications are the leading cause of treatment related mortality among AML patients, but there are little clinical data to inform whether management of neutropenia post AML chemotherapy should occur in an outpatient or inpatient setting. Further, no studies have been conducted that assess the impact of neutropenia management strategy on the quality of life of pediatric patients with AML and their caregivers.
Research has suggested that children with sufficient vitamin D levels undergoing hematopoietic stem cell transplant (HSCT) have improved outcomes, including lower incidences of infection and graft-versus-host disease (GVHD), as well as overall improved survival. However, supplementation in children undergoing HSCT has shown to be a challenge using standard or aggressive supplementation strategies. The primary objective of this study is to determine the safety and efficacy of a single, high dose oral vitamin D (Stoss Therapy) at the start of transplant followed by maintenance supplementation in children undergoing HSCT.
This phase I/II pilot study aims to enhance the effectiveness of stem cell transplant for children and young adults with high-risk acute myeloid leukemia (AML). Patients will undergo a stem cell transplant from a half-matched family donor. One week later, patients will receive an additional infusion of immune cells and a drug called interleukin-2. To mitigate the potential complications associated with graft-versus-host-disease, the donated stem cell product undergoes a process that removes a specific type of immune cell. After transplant, recipients are administered additional immune cells known as memory-like natural killer (ML NK) cells. These cells are derived by converting conventional natural killer cells obtained from the donor. The infusion of a modified stem cell product, along with administration of ML NK cells may help prevent the development of GvHD while simultaneously improving the efficacy of the treatment.
Phase 1 open-label study to evaluate the safety of intravenously administered, lentivirally transduced T cells expressing anti-CD123 chimeric antigen receptors expressing tandem TCRζ and 4-1BB (TCRζ /4-1BB) costimulatory domains in pediatric subjects with relapsed/refractory Acute Myeloid Leukemia (AML).
To find the recommended dose of ziftomenib in combination with gemtuzumab ozogamicin and venetoclax that can be given to pediatric participants who have relapsed or refractory AML or MPAL.
This is a phase 2 study to test the hypothesis that venetoclax in combination with standard chemotherapy will be tolerable and active in pediatric patients with newly diagnosed acute myeloid leukemia (AML). Primary Objectives: * Establish the tolerability adding venetoclax to standard chemotherapy in pediatric patients with AML * Estimate the proportion of patients who become minimal residual disease (MRD) negative by flow cytometry after one course of venetoclax-based induction therapy Secondary Objectives: - Estimate the rates of complete remission (CR), event-free survival (EFS), and overall survival (OS) in pediatric patients who receive venetoclax-based chemotherapy
This phase I trial studies the best dose and side effects of liposomal cytarabine, daunorubicin, and gemtuzumab ozogamicin in treating pediatric patients with acute myeloid leukemia that has returned after treatment (relapsed) or does not respond to treatment (refractory). Chemotherapy drugs, such as liposomal cytarabine and daunorubicin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Gemtuzumab ozogamicin is a monoclonal antibody, called gemtuzumab, linked to a toxic agent called ozogamicin. Gemtuzumab attaches to CD33 positive cancer cells in a targeted way and delivers ozogamicin to kill them. Giving liposomal cytarabine and daunorubicin and gemtuzumab ozogamicin may help to control the disease.
This phase I trial studies the side effects, best dose of flotetuzumab and how well it works in treating patients with acute myeloid leukemia (AML) that has come back (recurrent) or has not responded to treatment (refractory). This study also determines the safest dose of flotetuzumab to use in children with AML. As an immunotherapy, flotetuzumab may also cause changes in the body's normal immune system, which are also under study in this trial.
To find a recommended dose of ASTX727 (cedazuridine/decitabine) in combination with venetoclax for pediatric patients with relapsed AML.
This phase II trial tests how well ruxolitinib with tacrolimus and methotrexate work to prevent the development of graft versus host disease in pediatric and young adult patients undergoing allogeneic hematopoietic cell transplant for acute myeloid leukemia, acute lymphoblastic leukemia, or myelodysplastic syndrome. Ruxolitinib is a type of medication called a kinase inhibitor. It works by blocking the signals of cells that cause inflammation and cell proliferation, which may help prevent graft versus host disease (GVHD). Tacrolimus is a drug used to help reduce the risk of rejection by the body of organ and bone marrow transplants by suppressing the immune system. Methotrexate stops cells from making DNA, may kill cancer cells, and also suppress the immune system, which may reduce the risk of GVHD. Giving ruxolitinib with tacrolimus and methotrexate may prevent GVHD in pediatric and young adults undergoing allogeneic hematopoietic cell transplants.
This pilot research trial studies biomarkers in bone marrow samples from pediatric patients with high risk acute myeloid leukemia. Studying samples of bone marrow from patients with cancer in the laboratory may help doctors identify and learn more about biomarkers related to cancer.
This is a Phase I study with a conditional cohort expansion phase to evaluate the feasibility of, and to obtain preliminary efficacy data about, pretreatment with Azacytidine (AZA) for 5 days followed by fludarabine/cytarabine chemotherapy regimen in pediatric acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients who are refractory to primary treatment or who relapsed.
This is a phase I study of the investigational drug AC220 combined with cytarabine and etoposide in pediatric patients with relapsed acute lymphoblastic leukemia (ALL) and acute myelogenous leukemia (AML).
This study is for patients with relapsed or refractory Acute Lymphoblastic Leukemia (ALL), Acute Myelogenous Leukemia (AML), Hodgkin's Disease (HD) or Non-Hodgkin's Lymphoma (NHL). Panobinostat is a new drug that is considered investigational because it has not been approved in the United States by the Food and Drug Administration (FDA), or in any other country. Panobinostat is a histone deacetylase inhibitor (HDACi) and interferes with gene expression found in cells causing them to stop growing or die. Panobinostat has been used in several hundred adults who had leukemia, HD, NHL and other solid tumors. Panobinostat has not been given to children. This is a phase I study. In a phase I study, drugs are tested to the highest dose that can be safely given. Drugs are given at gradually increasing dosages until there are unacceptable side effects. The goal of the Phase I study is to find out the dose of panobinostat that can be safely given to children with relapsed ALL, AML, HD and NHL.
This phase I trial tests the safety, side effects, and best dose of FH-FOLR1 chimeric antigen receptor (CAR) T cells in treating pediatric patients with FOLR1+ acute myeloid leukemia (AML) that has come back after a period of improvement (recurrent) or has not responded to previous treatment (refractory). CAR T-cell therapy is a type of treatment in which a patient's T cells (a type of immune system cell) are changed in the laboratory so they will attack cancer cells. T cells are taken from a patient's blood. Then the gene for a special receptor that binds to a FOLR1 on the patient's cancer cells is added to the T cells in the laboratory. The special receptor is called a chimeric antigen receptor. Large numbers of the CAR T cells are grown in the laboratory and given to the patient by infusion for treatment of certain cancers. Chemotherapy drugs, such as fludarabine and cyclophosphamide, are given to a patient before the manufactured FH-FOLR1 CAR T cells are infused back into the patient to assist in the CAR T cell activity in the patient. The trial is evaluating if giving FH-FOLR1 CAR T cell therapy is safe and tolerable for pediatric patients with recurrent or refractory AML.
Pediatric patients (\<21 years at study entry) with relapsed or refractory acute myeloid leukemia (AML) will be treated with CD33\*CD3 a bispecific antibody to investigate the safety and tolerability of the drug.
This study aims to use clinical and biological characteristics of acute leukemias to screen for patient eligibility for available pediatric leukemia sub-trials. Testing bone marrow and blood from patients with leukemia that has come back after treatment or is difficult to treat may provide information about the patient's leukemia that is important when deciding how to best treat it, and may help doctors find better ways to diagnose and treat leukemia in children, adolescents, and young adults.
The purpose of this study is to test the safety and determine the best dose of venetoclax and cytarabine when given with or without idarubicin in treating pediatric patients with acute myeloid leukemia (AML) that did not respond to treatment (refractory) or has come back after treatment (relapsed). PRIMARY OBJECTIVE: Determine a tolerable combination of venetoclax plus chemotherapy in pediatric patients with relapsed or refractory AML or acute leukemia of ambiguous lineage. The primary endpoints are the recommended phase 2 doses (RP2D) of venetoclax plus cytarabine and venetoclax plus cytarabine and idarubicin. SECONDARY OBJECTIVE: Estimate the overall response rate to the combination of venetoclax and chemotherapy in pediatric patients with relapsed or refractor AML or acute leukemia of ambiguous lineage. The secondary endpoints are the rates of complete remission (CR) and complete remission with incomplete count recovery (CRi) for patients treated at the RP2D.
To determine the activity of lenalidomide in the treatment of pediatric subjects with relapsed/refractory acute myeloid leukemia (AML) (with second or greater relapse or refractory to at least 2 prior induction attempts) measured by morphological complete response defined as either a CR or CRi within the first 4 cycles of treatment.
The combination of mitoxantrone and clofarabine as reinduction therapy will be safe, well tolerated and effective in children, adolescents and young adults with poor risk refractory/relapsed acute leukemia and high grade non-Hodgkin lymphoma (NHL).
This is a phase I/II pediatric dose-ranging study that will evaluate the safety, tolerability, clinical response, pharmacokinetics and pharmacodynamics of midostaurin in patients \<18 years of age who have relapsed or refractory acute leukemias that may benefit from administration of midostaurin, including MLL-rearranged ALL and FLT3 positive AML.
This study aims to determine the impact of massage therapy for pediatric patients receiving intensive chemotherapy or stem cell transplant (SCT).
This is a research study to find out if adding a new study drug called revumenib to commonly used chemotherapy drugs is safe and if they have beneficial effects in treating patients with acute myeloid leukemia (AML) or acute leukemia of ambiguous lineage (ALAL) that did not go into remission after treatment (refractory) or has come back after treatment (relapsed), and to determine the total dose of the 3-drug combination of revumenib, azacitidine and venetoclax that can be given safely in participants also taking an anti-fungal drug. Primary Objective * To determine the safety and tolerability of revumenib + azacitidine + venetoclax in pediatric patients with relapsed or refractory AML or ALAL. Secondary Objectives * Describe the rates of complete remission (CR), complete remission with incomplete count recovery (CRi), and overall survival for patients treated with revumenib + azacitidine + venetoclax at the recommended phase 2 dose (RP2D).
The purpose of this study is to determine the recommended Phase 2 dose(s) (RP2Ds) of JNJ-75276617 in combination with a conventional chemotherapy backbone in pediatric and young adult participants with relapsed/refractory acute leukemia harboring histone-lysine N-methyltransferase 2A1 (\[KMT2A1\], nucleophosmin 1 gene (NPM1), or nucleoporin alterations in Part 1 (Dose Escalation) and to further evaluate safety at the RP2D(s) of JNJ-75276617 in combination with chemotherapy in pediatric and young adult participants with relapsed/refractory acute leukemia harboring KMT2A1, NPM1, or nucleoporin alterations and safety at the RP2D(s) of JNJ-75276617 as monotherapy in a select low burden of disease cohort in Part 2 (Dose Expansion).
Background: Myelodysplastic syndromes (MDS) occur when the cells that make blood cells are abnormal. There are limited treatment options for MDS. Researchers want to learn more through this natural history study so they can develop better treatments. Objective: To study the natural course of MDS and MDS/myeloproliferative neoplasms (MPN) and collect biological samples that can help researchers understand the disease. Eligibility: People with suspected or confirmed MDS or MDS/MPN. Healthy donors are also needed. They can be people who are scheduled to donate bone marrow at NIH for a relative, or they may be providing bone marrow in another study. Design: Participants will be screened with a medical history. Participants will have a physical exam. They will give blood and urine samples. They will discuss their symptoms, medications, and ability to perform their normal activities. They will complete surveys about how they are feeling. Participants will have a bone marrow biopsy. A needle will be inserted through a small cut. Bone marrow will be removed. A small piece of bone may be removed. Participants may have an optional skin biopsy. Participants may give optional saliva and stool samples. They may collect these samples at home and mail them to NIH. Participants may undergo optional apheresis. One or two needles or intravenous (IV) lines will be placed in their arm, neck, or groin veins. Blood will be removed. A machine will separate out the white cells. The rest of the blood will be returned to the participant. Participants will be contacted for follow-up once a year for up to 20 years. Healthy donors will have marrow collected for this study during their scheduled procedure with no follow-up.