21 Clinical Trials for Various Conditions
During the Core Phase of the study, participants received STI571 at a dose of 400 milligrams (mg) daily for up to 12 months. Participants completing 12 months of therapy were eligible to continue treatment in the Extension Phase of the study provided that, in the opinion of the investigator, they had benefited from treatment with STI571 and there were no safety concerns.
This is a long term safety study for patients who have completed a Novartis sponsored asciminib study and are judged by the investigator to benefit from continued treatment
The purpose of this study is to characterize the efficacy of ponatinib administered in 3 starting doses (45 mg, 30 mg, and 15 mg daily) in participants with CP-CML who are resistant to prior tyrosine-kinase inhibitor (TKI) therapy or have T315I mutation, as measured by \<=1 % Breakpoint Cluster Region-Abelson Transcript Level using International Scale (BCR-ABL1IS) at 12 months.
This is an observational registry to further characterize the safety profile of patients with chronic myeloid leukemia in the chronic phase (CP-CML), accelerated phase (AP-CML), blast phase (BP-CML), or Ph+ALL treated with Iclusig (ponatinib) in routine clinical practice in the US. The registry is focused on analysis of vascular occlusive events.
Phase 3, 2-arm, randomized, open label trial. Patients will be randomized to receive bosutinib or imatinib for the duration of the study.
The purpose of this study is to compare the efficacy of ponatinib and imatinib in patients with newly diagnosed chronic myeloid leukemia (CML) in the chronic phase.
This protocol provides expanded access to bone marrow transplants for children who lack a histocompatible (tissue matched) stem cell or bone marrow donor when an alternative donor (unrelated donor or half-matched related donor) is available to donate. In this procedure, some of the blood forming cells (the stem cells) are collected from the blood of a partially human leukocyte antigen (HLA) matched (haploidentical) donor and are transplanted into the patient (the recipient) after administration of a "conditioning regimen". A conditioning regimen consists of chemotherapy and sometimes radiation to the entire body (total body irradiation, or TBI), which is meant to destroy the cancer cells and suppress the recipient's immune system to allow the transplanted cells to take (grow). A major problem after a transplant from an alternative donor is increased risk of Graft-versus-Host Disease (GVHD), which occurs when donor T cells (white blood cells that are involved with the body's immune response) attack other tissues or organs like the skin, liver and intestines of the transplant recipient. In this study, stem cells that are obtained from a partially-matched donor will be highly purified using the investigational CliniMACS® stem cell selection device in an effort to achieve specific T cell target values. The primary aim of the study is to help improve overall survival with haploidentical stem cell transplant in a high risk patient population by limiting the complication of GVHD.
This study will gather information about the combination the drugs plerixafor with sargramostim in donors of blood-forming cells (stem cells). These stem cells will be collected from the donor and transplanted into their sibling. The investigators believe that the two drugs together will provide enough stem cells for transplantation and may also reduce the risk of graft versus host disease.
This is a single-arm, phase II study to evaluate safety and efficacy of tyrosine kinase inhibitor (TKI) cessation for chronic myeloid leukemia (CML) patients with stable molecular response in a real world population.
This phase II trial studies the effect of ASTX727 and dasatinib in treating patients with newly diagnosed Philadelphia chromosome or BCR-ABL positive chronic myeloid leukemia in chronic phase. Philadelphia chromosome positive and BCR-ABL positive are types of genetic mutations (changes). Chemotherapy drugs, such as ASTX727, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dasatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. ASTX727 and dasatinib may help to control Philadelphia chromosome-positive chronic myeloid leukemia or BCR-ABL positive chronic myeloid leukemia in chronic phase.
This phase I/II trial studies the best dose of venetoclax when given together with ponatinib and dexamethasone and to see how well they work in treating participants with Philadelphia chromosome or BCR-ABL positive acute lymphoblastic leukemia or chronic myelogenous leukemia that has come back or does not respond to treatment. Drugs used in chemotherapy, such as venetoclax and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving venetoclax, ponatinib, and dexamethasone may work better in treating participants with acute lymphoblastic leukemia or chronic myelogenous leukemia.
This phase II trial studies how well blinatumomab, methotrexate, cytarabine, and ponatinib work in treating patients with Philadelphia chromosome (Ph)-positive, or BCR-ABL positive, or acute lymphoblastic leukemia that has come back or does not respond to treatment. Immunotherapy with monoclonal antibodies, such as blinatumomab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as methotrexate and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving blinatumomab, methotrexate, cytarabine, and ponatinib may work better in treating patients with acute lymphoblastic leukemia.
This phase II trial studies how well low-intensity chemotherapy and ponatinib work in treating patients with Philadelphia chromosome-positive and/or BCR-ABL positive acute lymphoblastic leukemia that may have come back or is not responding to treatment. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, dexamethasone, methotrexate, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with rituximab and blinatumomab, may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Ponatinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Granulocyte colony stimulating factor helps the bone marrow make recover after treatment. Giving low-intensity chemotherapy, ponatinib, and blinatumomab may work better in treating patients with acute lymphoblastic leukemia.
To evaluate the safety, efficacy and pharmacokinetics of nilotinib over time in the Ph+ chronic myelogenous leukemia (CML) in pediatric patients (from 1 to \<18 years).
This is a 2 part study. The goal of the first part of this clinical research study is to find the highest tolerable dose of azacitidine that can be given with a TKI that you are already taking (such as Gleevec, Sprycel, or Tasigna). The safety of this drug will also be studied. The goal of the second part is to see if this combination may improve your response to the TKI you are already taking. Azacitidine is designed to change genes that are thought to cause leukemia. By changing these genes, the drug may help to stop them from causing the disease to grow.
This phase II trial studies how well combination chemotherapy and dasatinib works in treating participants with Philadelphia-positive or B-cell receptor-ABL positive acute lymphoblastic leukemia. Drugs used in chemotherapy, such as cyclophosphamide, vincristine, doxorubicin, dexamethasone, methotrexate, and cytarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving chemotherapy in combination with dasatinib may work better in treating participants with Philadelphia-positive or BCR-ABL positive acute lymphoblastic leukemia.
This study investigated the safety and efficacy of 400mg Versus 800mg imatinib in patients with newly diagnosed, previously untreated chronic myeloid leukemia in chronic phase (CML-CP) using molecular endpoints.
The purpose of this study is to evaluate the safety, tolerability and determine the recommended dose for further clinical evaluation of ELVN-001 in patients with chronic myeloid leukemia with and without T315I mutations in patients who are relapsed, refractory or intolerant to TKIs.
This research study is evaluating a drug called ABL001 taken in combination with dasatinib (Sprycel®) and prednisone (a steroid) as a possible treatment for B-cell Acute Lymphoblastic Leukemia that is BCR-ABL positive (BCR-ABL+ B-ALL) or Chronic Myeloid Leukemia (CML) in lymphoid blast crisis. BCR-ABL+ B-ALL is also called Philadelphia chromosome positive Acute Lymphoblastic Leukemia (Ph+ ALL). It is expected that 40-65 people will take part in this research study. * ABL001 * Dasatinib (Sprycel®) * Prednisone * Blinatumomab
The purpose of the study is to compare response rates in newly diagnosed Chronic Phase (CP) CML subjects treated with dasatinib plus BMS-833923 versus dasatinib alone.
RATIONALE: Giving low doses of chemotherapy before a donor stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving antithymocyte globulin before the transplant and tacrolimus and methotrexate after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving antithymocyte globulin together with cyclophosphamide, busulfan, and fludarabine works in treating patients with hematological cancer or kidney cancer undergoing donor stem cell transplant.