Treatment Trials

18 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Factors Affecting Post-transplant Cyclophosphamide (PTCy) Efficacy
Description

This study will examine the influence of donor and recipient pharmacogenetics (PG), drug pharmacokinetics (PK), and T cell phenotypes and how it may permit a tailored dosing strategy to improve the therapeutic index of post-transplant cyclophosphamide (PTCy) and optimize the graft versus tumor effect, while minimizing acute and chronic graft versus host disease (GVHD).

TERMINATED
Efficacy of a Patient Education Video
Description

Patients in the intervention arm will view the 23-minute video depicting the Hematopoietic stem cell transplantation (HSCT) experience. Patients in the control arm will receive HSCT frequently asked questions (FAQ) sheet developed by the National Cancer Institute (NCI) at the National Institutes of Health (NIH).

ACTIVE_NOT_RECRUITING
Azacitidine, Venetoclax, and Pevonedistat in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia
Description

This phase I/II trial studies the best dose of venetoclax when given together with azacitidine and pevonedistat and to see how well it works in treating patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Venetoclax may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Pevonedistat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving azacitidine, venetoclax, and pevonedistat may work better in treating patients with acute myeloid leukemia.

TERMINATED
A Study of TAS1553 in Subjects With Relapsed or Refractory Acute Myeloid Leukemia (AML) and Other Myeloid Neoplasms
Description

This is a Phase 1, 2-part, open-label, multicenter, first-in-human (FIH) study to assess the safety, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary clinical activity of TAS1553 administered orally to participants ≥18 years of age with relapsed or refractory (R/R) acute myeloid leukemia (AML) or other myeloid neoplasms where approved therapies have failed or for whom known life-prolonging therapies are not available. The AML population includes de novo AML, secondary AML, and myelodysplastic syndrome (MDS)-transformed into AML. Other myeloid neoplasms include accelerated phase myeloproliferative neoplasms (MPN), and chronic or accelerated phase MPN-unclassifiable (MPN-U) and MDS-MPN. Blast crisis phase of MPNs are considered secondary AML and will be included in the AML cohort. Part 1 is a multicenter, sequential group treatment feasibility study with 1 treatment arm and no masking (dose escalation). Part 2 is a multicenter, two-stage, multiple group, dose confirmation study with 1 treatment arm and no masking (exploratory dose expansion).

COMPLETED
Clofarabine, Idarubicin, Cytarabine, Vincristine Sulfate, and Dexamethasone in Treating Patients With Newly Diagnosed or Relapsed Mixed Phenotype Acute Leukemia
Description

This phase II trial studies how well clofarabine, idarubicin, cytarabine, vincristine sulfate, and dexamethasone work in treating patients with mixed phenotype acute leukemia that is newly diagnosed or has returned after a period of improvement (relapsed). Drugs used in chemotherapy, such as clofarabine, idarubicin, cytarabine, vincristine sulfate, and dexamethasone, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

TERMINATED
huJCAR014 CAR-T Cells in Treating Adult Patients With Relapsed or Refractory B-Cell Non-Hodgkin Lymphoma or Acute Lymphoblastic Leukemia
Description

This phase I trial studies the side effects of huJCAR014 in treating patients with relapsed or refractory B-cell non-Hodgkin lymphoma or acute lymphoblastic leukemia. huJCAR014 CAR-T cells are made in the laboratory by genetically modifying a patient's T cells and may specifically kill cancer cells that have a molecule CD19 on their surfaces. In Stage 1, dose-finding studies will be conducted in 3 cohorts: 1. Aggressive B cell NHL 2. Low burden ALL 3. High burden ALL In Stage 2, studies may be conducted in one or more cohorts to collect further safety, PK, and efficacy information at the huJCAR014 dose level(s) selected in Stage 1 for the applicable cohort(s). There are two separate cohorts for stage 2: 1. Cohort 2A, CAR-naïve (n=10): patients who have never received CD19 CAR-T cell therapy. 2. Cohort 2B, CAR-exposed (n=27): patients who have previously failed CD19 CAR-T cell therapy.

RECRUITING
A Vaccine (VSV-hIFNβ-NIS) with or Without Cyclophosphamide and Combinations of Ipilimumab, Nivolumab, and Cemiplimab in Treating Relapsed or Refractory Multiple Myeloma, Acute Myeloid Leukemia or Lymphoma
Description

This phase I trial studies the best dose and side effects of the VSV-hIFNβ-NIS vaccine with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab in treating patients with multiple myeloma, acute myeloid leukemia or lymphoma that has come back after a period of improvement (relapsed) or that does not respond to treatment (refractory). VSV-IFNβ-NIS is a modified version of the vesicular stomatitis virus (also called VSV). This virus can cause infection and when it does it typically infects pigs, cattle, or horses but not humans. The VSV used in this study has been altered by having two extra genes (pieces of DNA) added. The first gene makes a protein called NIS that is inserted into the VSV. NIS is normally found in the thyroid gland (a small gland in the neck) and helps the body concentrate iodine. Having this additional gene will make it possible to track where the virus goes in the body (which organs). The second addition is a gene for human interferon beta (β) or hIFNβ. Interferon is a natural anti-viral protein, intended to protect normal healthy cells from becoming infected with the virus. VSV is very sensitive to the effect of interferon. Many tumor cells have lost the capacity to either produce or respond to interferon. Thus, interferon production by tumor cells infected with VSV-IFNβ-NIS will protect normal cells but not the tumor cells. The VSV with these two extra pieces is referred to as VSV-IFNβ-NIS. Cyclophosphamide is in a class of medications called alkylating agents. It works by damaging the cell's DNA and may kill cancer cells. It may also lower the body's immune response. Immunotherapy with monoclonal antibodies, such as ipilimumab, nivolumab, and cemiplimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving VSV-IFNβ-NIS with or without cyclophosphamide and combinations of ipilimumab, nivolumab, and cemiplimab may be safe and effective in treating patients with recurrent peripheral T-cell lymphoma.

ACTIVE_NOT_RECRUITING
Cellular Immunotherapy Following Chemotherapy in Treating Patients With Recurrent Non-Hodgkin Lymphomas, Chronic Lymphocytic Leukemia, or B-Cell Prolymphocytic Leukemia
Description

This phase I trial studies the side effects and best dose of cellular immunotherapy following chemotherapy in treating patients with non-Hodgkin lymphomas, chronic lymphocytic leukemia, or B-cell prolymphocytic leukemia that has come back. Placing a modified gene into white blood cells may help the body build an immune response to kill cancer cells.

RECRUITING
Inotuzumab Ozogamicin and Combination Chemotherapy in Treating Patients With Acute Lymphoblastic Leukemia
Description

This phase I/II trial studies the side effects and best dose of inotuzumab ozogamicin and to see how well it works when given together with combination chemotherapy in treating patients with acute lymphoblastic leukemia. Inotuzumab ozogamicin is a monoclonal antibody, called inotuzumab, linked to a toxic agent called N-acetyl-gamma-calicheamicin dimethyl hydrazide (CalichDMH). Inotuzumab attaches to CD22 positive cancer cells in a targeted way and delivers CalichDMH to kill them. Immunotherapy with monoclonal antibodies, such as blinatumomab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving inotuzumab ozogamicin together with combination chemotherapy may be a better treatment for acute lymphoblastic leukemia.

TERMINATED
CD19-Specific T Cells Post AlloSCT
Description

This phase I trial investigates the side effects and best dose of CD19 positive (+) specific CAR-T cells in treating patients with CD19+ lymphoid malignancies, such as acute lymphoblastic leukemia, non-Hodgkin lymphoma, small lymphocytic lymphoma, or chronic lymphocytic lymphoma. Sometimes researchers change the genetic material in the cells of a patient's T cells using a process called gene transfer. Researchers then inject the changed T-cells into the patient's body. Receiving the T-cell infusion may help to control the disease.

ACTIVE_NOT_RECRUITING
Brentuximab Vedotin and Combination Chemotherapy in Treating Patients With CD30-Positive Peripheral T-cell Lymphoma
Description

This phase II trial studies the side effects and how well brentuximab vedotin and combination chemotherapy work in treating patients with CD30-positive peripheral T-cell lymphoma. Brentuximab vedotin is a monoclonal antibody, brentuximab, linked to a toxic agent called vedotin. Brentuximab attaches to CD30 positive cancer cells in a targeted way and delivers vedotin to kill them. Drugs used in chemotherapy, such as cyclophosphamide, doxorubicin, etoposide, and prednisone work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving brentuximab vedotin and combination chemotherapy may work better in treating patients with CD30-positive peripheral T-cell lymphoma.

RECRUITING
A Registry for People With T-cell Lymphoma
Description

The purpose of this registry study is to create a database-a collection of information-for better understanding T-cell lymphoma. Researchers will use the information from this database to learn more about how to improve outcomes for people with T-cell lymphoma.

COMPLETED
Salvia Hispanica Seed in Reducing Risk of Disease Recurrence in Patients With Non-Hodgkin Lymphoma
Description

This pilot clinical trial studies Salvia hispanica seed in reducing the risk of returning disease (recurrence) in patients with non-Hodgkin lymphoma. Functional foods, such as Salvia hispanica seed, has health benefits beyond basic nutrition by reducing disease risk and promoting optimal health. Salvia hispanica seed contains essential poly-unsaturated fatty acids, including omega 3 alpha linoleic acid and omega 6 linoleic acid; it also contains high levels of antioxidants and dietary soluble fiber. Salvia hispanica seed may raise omega-3 levels in the blood and/or change the bacterial populations that live in the digestive system and reduce the risk of disease recurrence in patients with non-Hodgkin lymphoma.

RECRUITING
Cholecalciferol in Improving Survival in Patients With Newly Diagnosed Cancer With Vitamin D Insufficiency
Description

This partially randomized clinical trial studies cholecalciferol in improving survival in patients with newly diagnosed cancer with vitamin D insufficiency. Vitamin D replacement may improve tumor response and survival and delay time to treatment in patients with cancer who are vitamin D insufficient.

COMPLETED
Study of MLN8237 in Participants With Advanced Hematological Malignancies
Description

This is an open-label, multicenter, phase 1 study of MLN8237 in participants with advanced hematological malignancies for whom there are limited standard treatment options.