7 Clinical Trials for Various Conditions
The goal of this study is to find out if using microprocessor-controlled prosthetic knees (MPKs), prosthetic knees with a built-in computer, improves health outcomes related to falls in adults who use above-knee prostheses. The main questions are: * Do individuals with MPKs have fewer fall-related health issues compared to those with non-microprocessor-controlled prosthetic knees (nMPKs)? * Do individuals with MPKs have increased mobility, faster walking speed, and improved quality of life compared to those with nMPKs? Participants who have recently received an nMPK as part of their regular care can join the study. Those randomized to the control group will keep using their nMPK, while those randomized to the intervention group will receive a stance-and-swing MPK or a stance-only MPK.
Microprocessor-controlled knees (MPKs) do not typically utilize motors to power joint rotation, but they automatically adjust resistance or damping in the joint to improve swing- and/or stance-phase control as appropriate for the prosthesis user during gait. The Ossur Power Knee is the only commercially-available MPK that uses a motor to provide active power generation during walking and other activities. The purpose of this proposed investigation is to perform and compare biomechanical evaluations of the Power Knee and Ossur Rheo XC, a passive MPK, during walking and other activities by prosthesis users. Furthermore, mobility between male and female subjects will be compared to determine if there are differences in prosthetic knee usage on the basis of sex.
The goal of this proposed project is to gather community-based data from the K2-level Transfemoral Amputee (TFA) population to aid in evidence-based prescription of powered prosthetic knees (i.e., choosing the right device to maximize the benefit for each patient). The investigators intend to use this trial data along with a concurrent study being conducted within the K3-K4 level population to guide the implementation of effective prescriptions towards those that can benefit most from a given device and limit prescription to those who would not see benefit in order to ensure the most judicious use of Department of Defense (DoD) and Veteran's Affairs healthcare dollars. The findings will also be shared with the research community to help drive the design of future devices by identifying what features and functions are most beneficial to which patient populations when the devices are used outside of the laboratory. In summary, more community-based data on how powered prosthetic knees compare with the current standard in TFA populations is needed to allow for improved clinical decision making and clinical outcomes.
The goal of this proposed project is to gather community-based data from the K4-level Transfemoral Amputee (TFA) population to aid in evidence-based prescription of powered prosthetic knees (i.e., choosing the right device to maximize the benefit for each patient). The investigators envision that this Level 1 submission will transition into a larger follow-on Level 2 trial that will explore a larger spectrum of patient populations (K2-K4), as well as testing additional Power Knees currently in development that are expected to become commercialized in the near future. The investigators intend to use this Level 2 trial data to guide the implementation of effective prescriptions towards those that can benefit most from a given device and limit prescription to those who would not see benefit in order to ensure the most judicious use of Department of Defense (DoD) and Veteran's Affairs healthcare dollars. The findings will also be shared with the research community to help drive the design of future devices by identifying what features and functions are most beneficial to which patient populations when the devices are used outside of the laboratory. In summary, more community-based data on how powered prosthetic knees compare with MPKs is needed to allow for improved clinical decision making and clinical outcomes.
Liberating Technologies, Inc. (LTI) has developed a dexterous prosthetic fingertip that will be fit onto an i-Digits™ partial hand prosthesis and allow for an additional fine grasp. The device will interface with research participants' existing prostheses and use the same control strategy that is used for their everyday use. Each participant's prosthesis will be restored to their original configuration by the end of their testing period.
The comfort and fit of the residual limb within a prosthetic socket are of primary concern for many amputees. The residual limb is typically covered by non-breathable and non- thermally conductive materials that can create a warm and ultimately moist environment. To address this, Liberating Technologies, Inc. (LTI) and Vivonics, Inc. have developed a thermo-electric cooling (TEC)-based module called the Intrasocket Cooling Element (ICE), that can be embedded into the prosthesis in order to cool the residual limb. A technology that can provide thermal control while retaining adequate suspension, weight and other prosthetic characteristics would benefit many prosthesis wearers.
Veterans who use prosthetic limbs commonly suffer from skin problems such as scars that create discomfort and pain to the point that wearing the prosthesis is no longer tolerable. The Veteran must then discontinue prosthetic use to allow healing prior to wearing the limb again. Current treatments for skin problems include manual scar mobilization and massage, stretching, desensitization techniques, pain medication, prosthetic adjustment, steroid injection, scar excision and others. Most of these have not proven to be a long-term solution. A dermatologic procedure common in non-amputees for scar and skin lesion management, fractionated laser therapy, may be a long-term solution minimizing discomfort, pain and time out of the prosthesis. This preliminary study seeks to determine if fractional laser therapy can improve prosthetic use, and quality of life of Veterans with amputation who use lower limb prostheses.