241 Clinical Trials for Various Conditions
RATIONALE: Radiation therapy uses high-energy x-rays to damage tumor cells. Drugs such as pilocarpine may protect normal cells from the side effects of radiation therapy. It is not yet known if pilocarpine may be effective in preventing mucositis and dry mouth in patients receiving radiation therapy for head and neck cancer. PURPOSE: Randomized, double-blinded, phase III trial to study the effectiveness of pilocarpine in preventing mucositis and dry mouth in patients receiving radiation therapy for head and neck cancer.
This clinical trial studies direct visual fluorescence in finding oral cancer in high-risk patients and patients undergoing routine dental care. Diagnostic procedures, such as direct visual fluorescence, may help find and diagnose oral cancer.
This randomized phase II trial studies how well vandetanib works in preventing head and neck cancer in patients with precancerous head and neck lesions. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of vandetanib may keep cancer from forming in patients with premalignant lesions
This phase II/III compares the standard therapy (chemotherapy plus cetuximab) versus adding bevacizumab to standard chemotherapy, versus combination of just bevacizumab and atezolizumab in treating patients with head and neck cancer that has spread to other places in the body (metastatic or advanced stage) or has come back after prior treatment (recurrent). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Bevacizumab is in a class of medications called antiangiogenic agents. It works by stopping the formation of blood vessels that bring oxygen and nutrients to tumor. This may slow the growth and spread of tumor. Cetuximab is in a class of medications called monoclonal antibodies. It binds to a protein called EGFR, which is found on some types of cancer cells. This may help keep cancer cells from growing. Cisplatin and carboplatin are in a class of chemotherapy medications known as platinum-containing compounds. They work by killing, stopping, or slowing the growth of cancer cells. Docetaxel is in a class of chemotherapy medications called taxanes. It stops cancer cells from growing and dividing and may kill them. The addition of bevacizumab to standard chemotherapy or combination therapy with bevacizumab and atezolizumab may be better than standard chemotherapy plus cetuximab in treating patients with recurrent/metastatic head and neck cancers.
This randomized phase II trial studies how well ficlatuzumab with or without cetuximab works in treating patients with head and neck squamous cell carcinoma that has come back or spread to other places in the body and resistant to cetuximab treatment. Monoclonal antibodies, such as ficlatuzumab and cetuximab, may block growth signals that lets a tumor cell survive and reproduce, and helps the immune system recognize and fight head and neck squamous cell carcinoma.
This pilot clinical trial studies how well Prepare to Care kit works in improving caregiver support in patients with stage I-IV head and neck cancer that is new or has come back. Prepare to Care kit may increase knowledge about head and neck cancer and enhance stress-management skills.
This phase II trial studies how well radiation therapy with or without cisplatin works in treating patients with stage III-IVA squamous cell carcinoma of the head and neck who have undergone surgery. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. Drugs used in chemotherapy, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known if radiation therapy is more effective with or without cisplatin in treating patients with squamous cell carcinoma of the head and neck.
This phase II trial studies the effects of interstitial photodynamic therapy in patients with head and neck cancer that has come back. Interstitial photodynamic therapy uses a combination of laser light and a light-sensitive drug called porfimer sodium to destroy tumors. During treatment a laser light is used to activate the drug. Interstitial photodynamic therapy may be an effective treatment for head and neck cancer.
This phase II clinical trial studies how well soy isoflavones work in preventing head and neck cancer in patients with stage I-IV head and neck cancer undergoing surgery. Chemoprevention is the use of certain drugs to keep cancer from forming. The use of soy isoflavones may prevent head and neck cancer recurrence.
This phase II trial studies how well giving temsirolimus together with cetuximab works compared to temsirolimus alone in treating patients with recurrent and/or metastatic head and neck cancer who did not respond to previous therapy. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. It is not yet known whether giving temsirolimus together with cetuximab is more effective than giving temsirolimus alone.
This phase I trial studies the side effects and the best dose of lenalidomide when given together with cetuximab in treating patients with colorectal cancer or head and neck cancer that has spread to other places in the body and usually cannot be cured or controlled with treatment. Biological therapies, such as lenalidomide, use substances made from living organisms that may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, may block tumor growth in different ways by targeting certain cells. Giving lenalidomide together with cetuximab may be a better treatment for colorectal cancer or head and neck cancer.
This phase II trial is studying how well cediranib maleate works in treating patients with recurrent or newly diagnosed metastatic head and neck cancer. Cediranib maleate may stop the growth of head and neck cancer by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
RATIONALE: Gathering information about allergies to metals may help doctors learn whether having an allergy to metal used in dental work increases the risk of developing oral cancer. PURPOSE: This clinical trial is studying contact allergies to dental metal as a possible risk factor for oral cancer.
RATIONALE: A specially modified virus called ONYX-015 may be able to kill tumor cells while leaving normal cells undamaged. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining ONYX-015 with chemotherapy may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of ONYX-015 combined with cisplatin and fluorouracil in treating patients who have advanced head and neck cancer.
This randomized pilot early phase I trial studies how well nivolumab with or without tadalafil work in treating patients with head and neck squamous cell carcinoma that has come back and can be removed by surgery. Monoclonal antibodies, such as nivolumab, may interfere with the ability of tumor cells to grow and spread. Tadalafil may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving nivolumab and tadalafil may work better in treating patients head and neck squamous cell carcinoma.
The goal of this clinical research study is to compare the use of MRI simulations to plan different doses of intensity modulated radiotherapy (IMRT) to the standard IMRT dose in patients with low risk human papilloma virus positive oropharyngeal cancer. This is an investigational study. MRI simulations and radiation therapy are delivered using FDA-approved and commercially available methods. The use of MRI imaging to plan the dose is investigational. Up to 90 participants will be enrolled in this study. All will take part at MD Anderson.
The goal of this clinical research study is to learn if utomilumab, when given with ISA101b, is able to shrink or slow the growth of tumors in patients with incurable HPV+ oropharyngeal squamous cell carcinoma. This is an investigational study. Utomilumab and ISA101b are not FDA approved or commercially available. They are currently being used for research purposes only. The study doctor can explain how the study drugs are designed to work. Up to 27 participants will be enrolled. All will take part at MD Anderson.
This phase Ib trial tests the safety, side effects and best dose of tumor membrane vesicle (TMV) vaccine therapy alone and in combination with pembrolizumab and evaluates how well it works in treating patients with head and neck squamous cell cancer that has come back after a period of improvement (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Vaccines made from a person's tumor cells, such as TMV vaccines, may help the body build an effective immune response to kill tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving TMV vaccine therapy alone or with pembrolizumab may be safe, tolerable and/or effective in treating patients with recurrent and/or metastatic head and neck squamous cell cancer.
This phase III trial compares pembrolizumab with radiation therapy to pembrolizumab without radiation therapy (standard therapy) given after pembrolizumab plus chemotherapy for the treatment of patients with squamous cell carcinoma of the head and neck that has spread from where it first started (primary site) to other places in the body (metastatic). Pembrolizumab is a type of immunotherapy that stimulates the body's immune system to fight cancer cells. Pembrolizumab targets and blocks a protein called PD-1 on the surface of certain immune cells called T-cells. Blocking PD-1 triggers the T-cells to find and kill cancer cells. Radiation therapy uses high-powered rays to kill cancer cells. Giving radiation with pembrolizumab may be more effective at treating patients with metastatic head and neck cancer than the standard therapy of giving pembrolizumab alone.
This phase I/II trial studies the side effects of tozuleristide in imaging oral cavity squamous cell cancer and high-grade oral cavity dysplasia during surgery. Tozuleristide is an imaging agent that specifically binds to tumor cells. When exposed to near-infrared light, tozuleristide causes tumor cells to fluoresce (light up), so that surgeons may better distinguish tumor cells from healthy cells during surgery.
This phase II trial compares the effect of adding ipatasertib to pembrolizumab (standard immunotherapy) vs. pembrolizumab alone in treating patients with squamous cell cancer of the head and neck that has come back (recurrent) or that has spread from where it first started (primary site) to other places in the body (metastatic). Ipatasertib is in a class of medications called protein kinase B (AKT) inhibitors. It may stop the growth of tumor cells and may kill them. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving ipatasertib in combination with pembrolizumab may be more effective than pembrolizumab alone in improving some outcomes in patients with recurrent/metastatic squamous cell cancer of the head and neck.
This phase II trial studies the effect of cemiplimab in combination with low-dose paclitaxel and carboplatin in treating patients with squamous cell carcinoma of the head and neck that has come back (recurrent) or spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as cemiplimab , may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, like paclitaxel and carboplatin, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving cemiplimab in combination with paclitaxel and carboplatin may work better in treating recurrent or metastatic squamous cell carcinoma of the head and neck.
This phase II trial investigates how well sodium thiosulfate works in preventing ototoxicity (hearing loss/damage) in patients with squamous cell cancer of the head and neck that has spread to nearby tissue or lymph nodes (locally advanced) who are undergoing a chemoradiation. Sodium thiosulfate is a type of medication used to treat cyanide poisoning and to help lessen the side effects from cisplatin. Chemotherapy drugs, such as cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving chemotherapy with radiation therapy may kill more tumor cells. The purpose of this trial is to find out whether it is feasible to give sodium thiosulfate 4 hours after each cisplatin infusion along with standard of care radiation therapy in patients with head and neck cancer. Giving sodium thiosulfate after cisplatin may help decrease the risk of hearing loss.
This phase I/II trial studies how well hypofractionated radiation therapy followed by surgery works in treating patients with squamous cell carcinoma of the oral cavity that has spread to other places in the body. Hypofractionated radiation therapy delivers higher doses of radiation therapy over a shorter period of time and may kill more tumor cells and have fewer side effects. Giving hypofractionated radiation therapy before surgery may shrink the tumor making it easier to be removed, may reduce the risk of the cancer coming back, and may be a better treatment for squamous cell carcinoma of the oral cavity.
This randomized phase II trial studies how well photodynamic therapy with HPPH works in treating patients with squamous cell carcinoma of the oral cavity. Photodynamic therapy uses HPPH that becomes active when it is exposed to a certain kind of light. When the drug is active, cancer cells are killed. This may be effective against squamous cell carcinoma of the oral cavity.
This phase I/II trial studies the side effects and the best dose of sorafenib tosylate and docetaxel when given together with cisplatin and to see how well they work in treating patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Drugs used in chemotherapy, such as cisplatin and docetaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Sorafenib tosylate may also help cisplatin and docetaxel work better by making tumor cells more sensitive to the drugs. Giving sorafenib tosylate, cisplatin, and docetaxel may be an effective treatment for squamous cell carcinoma of the head and neck.
This phase I/II trial studies the side effects and best dose of linsitinib when given together with erlotinib hydrochloride and radiation therapy after surgery in treating patients with advanced or recurrent head and neck cancer. Erlotinib hydrochloride and linsitinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving radiation therapy together with erlotinib hydrochloride and linsitinib may kill more tumor cells. Giving these treatments after surgery may kill any tumor cells that remain after surgery.
This phase I trial studies the side effects and best dose of TLR8 Agonist VTX-2337 when given together with cetuximab in treating patients with locally advanced, recurrent, or metastatic squamous cell cancer of the head and neck (SCCHN). Biological therapies, such as TLR8 Agonist VTX-2337 may stimulate the immune system in different ways and stop tumor cells from growing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Giving TLR8 Agonist VTX-2337 together with cetuximab may kill more tumor cells.
This phase II trial is studying how well giving carboplatin, paclitaxel, cetuximab, and erlotinib hydrochloride together works in treating patients with metastatic or recurrent squamous cell head and neck cancer. Drugs used in chemotherapy, such as carboplatin and paclitaxel, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as cetuximab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving combination chemotherapy together with cetuximab and erlotinib hydrochloride may kill more tumor cells.
RATIONALE: Erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Erlotinib hydrochloride may also make tumor cells more sensitive to radiation therapy. Radiation therapy uses high-energy x- rays and other types of radiation to kill tumor cells. Giving erlotinib hydrochloride together with radiation therapy may be an effective treatment for patients with head and neck cancer.PURPOSE: This phase II trial is studying how well giving erlotinib hydrochloride together with radiation therapy works in treating patients with stage III-IV squamous cell cancer of the head and neck.