573 Clinical Trials for Various Conditions
This trial studies how well a prehabilitation program works to improve patient outcomes after surgery compared to the normal standard of care prehabilitation in frail patients undergoing surgery for pancreatic, liver, or gastric cancer. Frailty is defined as the pathophysiology of aging or through the accumulation of physiologic and functional deficits. Prehabilitation programs seek to optimize the medical and physical state of patients prior to undergoing surgery with the goal of improving outcomes following surgery. Despite evidence for its importance in health outcomes for frail patients, prehabilitation programs have not been well studied in cancer surgery populations. This trial may provide researchers with more information on how to improve patient outcomes after cancer surgery through the use of prehabilitation programs.
This pilot clinical trial studies how well Walking for Recovery from Surgery works in improving quality of life in older adults with lung or gastrointestinal cancer and their family caregivers. A walking program, such as Walking for Recovery from Surgery may help support overall well-being as a caregiver, and may help improve family member or friend's recovery from surgery.
This clinical trial studies the side effects and best way to perform yttrium Y-90 radioembolization in treating patients with liver cancer that has spread to other places in the body (metastatic). Yttrium Y-90 radioembolization is a therapy that injects radioactive microspheres directly into an artery that feeds liver tumors to cut off their blood supply. Performing yttrium Y-90 radioembolization in a single session may make treatment faster, minimize patient travel, and decrease the overall cost of the procedure.
This clinical trial studies how well 18F-fluoromisonidazole (\[18F\]FMISO) positron emission tomography (PET)/computed tomography (CT) works after transcatheter arterial embolization in imaging tumors in patients with liver cancer. Transcatheter arterial embolization blocks blood flow to tumor cells by inserting tiny foreign particles into an artery near the tumor. \[18F\]FMISO is a type of radioimaging agent that binds to large molecules in tumor cells that have a low level of oxygen, and the radiation given off by \[18F\]FMISO is picked up by a PET scan and this may help researchers learn whether changes occur in the tumors after treatment, which can help decide how well the treatment worked earlier than is currently possible
This research registry studies Yttrium Y 90 resin microspheres in collecting data from patients with liver cancer not capable of being removed by surgery (unresectable) for the radiation-emitting Selective Internal Radiation-Spheres (SIR-spheres) in non-resectable (RESIN) liver tumor registry. The information generated will help doctors better understand treatment patterns involving Y90 therapy, gain additional insights in the long-term outcomes for patients, as well as guide future research for using Y90 therapy, especially for those conditions where data is currently very limited or lacking.
This clinical trial studies if kilo-voltage cone beam computed tomography (KV-CBCT) and ultrasound imaging works in guiding radiation therapy in patients with prostate, liver, or pancreatic cancer. Computer systems, such as KV-CBCT and ultrasound imaging, allow doctors to create a 3-dimensional picture of the tumor may help in planning radiation therapy and may result in more tumor cells being killed.
This randomized pilot clinical trial studies body warming in improving blood flow and oxygen delivery to tumors in patients with cancer. Heating tumor cells to several degrees above normal body temperature may kill tumor cells.
This study is being done to collect tissue samples to test how accurately a tumor response platform, Elephas, can predict clinical response across multiple types of immunotherapies, chemoimmunotherapy and tumor types.
It is sometimes difficult to precisely understand whether a primary liver cancer is a hepatocellular carcinoma or a cholangiocarcinoma. The researchers will develop and validate a liquid biopsy, based on exosomal content analysis and powered by machine learning, to help clinicians differentiate these two cancers before surgery.
This clinical trial studies if enhanced outpatient symptom management with telemedicine and remote monitoring can help reduce acute care visit due to chemotherapy-related adverse events. Receiving telemedicine and remote monitoring may help patients have better outcomes (such as fewer avoidable emergency room visits and hospitalizations, better quality of life, fewer symptoms, and fewer treatment delays) than patients who receive usual care.
This research trial studies how well biospecimen collection works in identifying genetic changes in patients with breast, prostate, colorectal, liver, or kidney cancer or multiple myeloma undergoing surgery. Studying samples collected during surgery may add to the understanding of cancer by looking for the genetic changes that cause early cancer onset in people of certain racial and ethnic groups.
This phase II trial investigates the effect of combining two immune therapies, atezolizumab and CDX-1127 (varlilumab), with or without cobimetinib, in treating patients with biliary tract cancer that cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Varlilumab is an immune agonist antibody that may further strengthen the immune system's attack on the cancer. Cobimetinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving atezolizumab in combination with varlilumab and cobimetinib may work better than atezolizumab and varlilumab alone in treating patients with unresectable biliary tract cancer.
This phase I/II trial studies the side effects of anti-CTLA4-NF monoclonal antibody (mAb) (BMS986218), nivolumab, and stereotactic body radiation therapy in treating patients with solid malignancies that has spread to other places in the body (metastatic). Immunotherapy with monoclonal antibodies, such as anti-CTLA4-NF mAb (BMS-986218) and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Stereotactic body radiation therapy uses special equipment to position a patient and deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. Giving -CTLA4-NF mAb (BMS986218), nivolumab, and stereotactic body radiation therapy may kill more tumor cells.
There is a high prevalence of hepatic cirrhosis in patients with hepatocellular carcinomas (HCC), or chemotherapy-induced hepatic atrophy or hepatosteatosis in patients with liver metastases associated with high risk of radiation-induced liver disease (RILD) after stereotactic body radiotherapy (SBRT). MRI-SPION radiotherapy planning will facilitate detection and maximize avoidance of residual functionally active hepatic parenchyma from over-the-threshold irradiation thus increasing safety of liver SBRT in patients with pre-existing liver conditions. The investigators have previously demonstrated that liver SBRT with SPECT/CT functional treatment planning utilizing 99mTc sulfur colloid in transplant eligible patients associated with minimal hepatotoxicity and without hastening of advanced hepatic cirrhosis progression while patients await liver transplant. Switching from nuclear medicine to an MR-Linac-SPION based quantitative treatment-planning platform will substantially improve diagnostic accuracy in defining safe volumes of residual functional hepatic parenchyma for liver SBRT planning on MR-Linac.
This study compares gadolinium contrast-enhanced Abbreviated MRI (AMRI) to standard ultrasound for Hepatocellular Carcinoma (HCC) screening and surveillance in subjects with liver cirrhosis.
This phase Ib trial studies the side effects and best dose of IRX-2 when given together with cyclophosphamide and nivolumab in treating patients with liver cancer that has come back or spread to other parts of the body and does not response to treatment. Biological therapies, such as IRX-2, may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Drugs used in chemotherapy, such as cyclophosphamide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving IRX-2, cyclophosphamide, and nivolumab may work better than the IRX?2 regimen alone in treating patients with hepatocellular carcinoma.
This phase I/II clinical trial studies the side effects of pembrolizumab with or without elbasvir/grazoprevir and ribavirin and to see how well they work in treating patients with liver cancer that has spread to other places in the body and does not respond to previous treatment. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Elbasvir/grazoprevir and ribavirin may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving pembrolizumab in combination with elbasvir/grazoprevir and ribavirin may work better in treating patients with liver cancer than with pembrolizumab alone.
This pilot clinical trial studies magnetic resonance imaging (MRI) with gadoxetate disodium in measuring tumors in patients with liver cancer. Diagnostic procedures, such as MRI with gadoxetate disodium, may help find and diagnose liver cancer and find out how far the disease has spread. It is not yet known whether MRI with gadoxetate disodium provides a more precise measurement of liver tumors than standard computed tomography (CT).
The purpose of this study is to prospectively analyze the value of 3D ultrasound perfusion imaging for treatment planning, the prediction of therapy success, and to monitor the treatment response in patients with a primary or metastatic liver tumor undergoing radiation treatment.
This randomized phase II trial studies how well trametinib or combination chemotherapy works in treating patients with refractory or advanced biliary or gallbladder cancer or that cannot be removed by surgery. Trametinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as fluorouracil, leucovorin calcium, and capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether giving trametinib is more effective than combination chemotherapy in treating patients with biliary or gallbladder cancer.
This pilot clinical trial studies stereotactic body radiation therapy in treating patients with liver cancer that cannot be removed by surgery. Stereotactic radiation therapy may be able to send x-rays directly to the tumor and cause less damage to normal tissue.
This phase II trial is studying how well MD2206 works in treating patients with advanced refractory biliary cancer that cannot be removed by surgery.
This clinical trial studies positron emission tomography (PET)/computed tomography (CT) in diagnosing patients with liver cancer undergoing surgical resection. Diagnostic procedures, such as fluorine-18 fluoromethylcholine PET/CT, may help find and diagnose liver cancer.
This phase II trial is studying how well MK2206 works in treating patients with advanced liver cancer that did not respond to previous therapy. MK2206 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
To determine the efficacy and toxicity of TACE combined with SBRT
This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.
This phase I trial is studying the side effects and best dose of cixutumumab when given together with sorafenib tosylate in treating patients with advanced liver cancer. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving cixutumumab together with sorafenib tosylate may kill more tumor cells.
To determine whether biomarkers assessed in blood samples can be used to detect individuals at risk for developing blood clots or worsening of their underlying disease. The ultimate goal of the study is to identify key biomarkers derived from blood that are most characteristic and informative of individuals who will go on to develop a clotting complication.
This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Imaging procedures, such as carbon-11 acetate positron emission tomography (PET) and fludeoxyglucose F 18 PET, may improve the ability to detect hepatocellular carcinoma (liver cancer) and allow doctors to plan the most effective treatment. PURPOSE: This clinical trial is studying how well carbon-11 acetate PET and fludeoxyglucose F 18 PET work in detecting cancer in patients with liver cancer.