104 Clinical Trials for Various Conditions
RATIONALE: Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth or by blocking blood flow to the tumor. Drugs used in chemotherapy work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Chemoembolization kills tumor cells by blocking the blood flow to the tumor and keeping chemotherapy drugs near the tumor. PURPOSE: This phase I trial is studying side effects and best dose of sorafenib tosylate when given together with chemoembolization in treating patients with unresectable liver cancer.
TSR-022 (cobolimab, TIM-3 binding antibody) and TSR-042 (dostarlimab, PD-1 binding antibody) may stop the growth of tumor cells by allowing the immune system to attack the cancer. This phase II trial is studying how well TSR-022 (cobolimab, TIM-3 binding antibody) and TSR-042 (dostarlimab, PD-1 binding antibody) work in combination in treating patients with locally advanced or metastatic liver cancer.
This pilot clinical trial studies positron emission tomography (PET)/computed tomography (CT) in finding beads after Yttrium-90 bead therapy in patients with primary liver cancer or cancer that has spread to the liver (metastatic) that can not be removed by surgery. Imaging procedures, such as PET/CT after Yttrium-90 bead therapy, may help see if the beads are present in the lung and compare the results with the pre-therapy imaging.
This clinical trial studies radiolabeled glass beads (yttrium Y 90 glass microspheres) in treating patients with unresectable hepatocellular carcinoma. Internal radiation therapy uses radioactive material placed directly into or near a tumor to kill tumor cells. Using radiolabeled glass beads to kill tumor cells may be an effective treatment for liver cancer.
This pilot clinical trial examines how well different imaging biomarkers acquired using 3-Telsa magnetic resonance imaging (MRI) methods perform in determining treatment response to transarterial chemoembolization (TACE) in patients with hepatocellular carcinoma. Compared to conventional imaging, multi-parametric 3-Tesla MRI offers the ability to quantitatively measure tissue structural, functional, cellular, and molecular properties, providing a more robust, clinically relevant method for assessing cancer response to therapy.
This pilot clinical trial studies 6,8-bis(benzylthio)octanoic acid in treating patients with advanced or metastatic cholangiocarcinoma that cannot be removed by surgery. 6,8-Bis(benzylthio)octanoic acid may stop the growth of cholangiocarcinoma by blocking blood flow to the tumor
This study is being done to determine the dose of a chemotherapy drug (irinotecan \[irinotecan hydrochloride\]) that can be tolerated as part of a combination of drugs. There is a combination of chemotherapy drugs often used to treat gastrointestinal cancer, which consists of 5-FU (fluorouracil), leucovorin (leucovorin calcium), irinotecan and oxaliplatin and is known as "FOLFIRINOX". FOLFIRINOX is a current drug therapy combination (or regimen) used for people with advanced pancreatic cancer, although this combination is not Food and Drug Administration (FDA) approved for this indication. FOLFIRINOX was recently shown in a separate clinical trial to increase survival compared to another commonly used drug in pancreatic cancer called gemcitabine. FOLFIRINOX is also a reasonable regimen for those with other advanced cancers of the gastrointestinal tract, including colon cancer, rectal cancer, esophagus cancer, stomach cancer, gall bladder cancer, bile duct cancer, ampullary cancer, and cancers with an unknown primary location. The best dose of irinotecan to use in FOLFIRINOX is not known. This study will analyze one gene (uridine 5'-diphospho \[UDP\] glucuronosyltransferase 1 family, polypeptide A1 \[UGT1A1\] gene) of subjects for the presence of an alteration in that gene, which may affect how the body handles irinotecan. Genes help determine some of the investigators individual characteristics, such as eye color, height and skin tone. Genes may also determine why people get certain diseases and how medicines may affect them. The result of the genetic analysis will divide subjects into one of three groups: A, B, or C. Group A (approximately 45% of subjects) will receive the standard dose of irinotecan. Group B (approximately 45% of subjects) will receive a lower dose of irinotecan. Group C (approximately 10% of subjects) will receive an even lower dose of irinotecan
The purpose of this study is to determine if sorafenib (sorafenib tosylate) is a safe and effective treatment option for preventing liver cancer in high risk patients following liver transplantation. Liver transplantation is a treatment option for liver cancer patients, but despite transplantation, the liver cancer can recur in the new, transplanted liver. It is not known whether sorafenib is effective in preventing cancer recurrence in high risk patients following liver transplantation
This phase I clinical trial is studying the side effects and best dose of veliparib and gemcitabine hydrochloride when given with cisplatin in treating patients with advanced biliary, pancreatic, urothelial, or non-small cell lung cancer. Veliparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as cisplatin and gemcitabine hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. Veliparib may help cisplatin and gemcitabine hydrochloride work better by making tumor cells more sensitive to the drugs.
This phase II trial is studying how well giving cediranib maleate together with combination chemotherapy works in treating patients with advanced biliary cancers. Cediranib maleate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth or by blocking blood flow to the tumor. Drugs used in chemotherapy, such as oxaliplatin, leucovorin calcium, and fluorouracil, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving cediranib maleate together with combination chemotherapy may kill more tumor cells.
This phase I trial studies the side effects and best dose of sorafenib tosylate in treating patients with liver cancer who have undergone a liver transplant. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Giving sorafenib after liver transplant may be an effective treatment for liver cancer
This phase II trial studies how well giving sunitinib malate together with capecitabine works in treating patients with unresectable or metastatic liver cancer. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as capecitabine, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving sunitinib malate together with capecitabine may kill more tumor cells
This phase II trial is studying how well IMC-A12 works in treating patients with advanced liver cancer. Monoclonal antibodies, such as IMC-A12, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them.
This phase II trial is studying selumetinib to see how well it works in treating patients with locally advanced or metastatic liver cancer. Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for their growth.
This phase II trial is studying how well AZD2171 works in treating patients with locally advanced unresectable or metastatic liver cancer. AZD2171 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor
This phase II trial is studying how well giving bevacizumab together with erlotinib works in treating patients with advanced liver cancer. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Erlotinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Bevacizumab and erlotinib may also stop the growth of tumor cells by blocking blood flow to the tumor. Giving bevacizumab together with erlotinib may kill more tumor cells
This phase I/II trial is studying the side effects and best dose of belinostat and to see how well it works in treating patients with liver cancer that cannot be removed by surgery. Belinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth
AZD2171 (cediranib maleate) may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. This phase II trial is studying how well AZD2171 works in treating patients with locally advanced or metastatic liver cancer.
Lapatinib ditosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. This phase II trial is studying how well lapatinib ditosylate works in treating patients with unresectable liver or biliary tract cancer
This phase II trial is studying how well lapatinib works in treating patients with locally advanced or metastatic biliary tract or liver cancer that cannot be removed by surgery. Lapatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This clinical trial is studying the amount of EF5 and motexafin lutetium present in tumor cells and/or normal tissues of patients with abdominal (such as ovarian, colon, or stomach cancer) or non-small cell lung cancer. EF5 may be effective in measuring oxygen in tumor tissue. Photosensitizing drugs such as motexafin lutetium are absorbed by tumor cells and, when exposed to light, become active and kill the tumor cells. Knowing the level of oxygen in tumor tissue and the level of motexafin lutetium absorbed by tumors and normal tissue may help predict the effectiveness of anticancer therapy
This phase II trial is studying how well bortezomib works as first-line systemic therapy in treating patients with unresectable locally advanced or metastatic adenocarcinoma (cancer) of the bile duct or gallbladder. Bortezomib may stop the growth of tumor cells by blocking the enzymes necessary for their growth.
This phase II trial is studying how well giving doxorubicin together with bortezomib works in treating patients with liver cancer. Drugs used in chemotherapy, such as doxorubicin, work in different ways to stop tumor cells from dividing so they stop growing or die. Bortezomib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. Giving doxorubicin together with bortezomib may kill more tumor cells.
This phase II trial is studying how well bortezomib works in treating patients with hepatocellular carcinoma (liver cancer) that cannot be removed with surgery. Bortezomib may stop the growth of tumor cells by blocking the enzymes necessary for their growth.
Phase II trial to study the effectiveness of gefitinib in treating patients who have advanced unresectable hepatocellular carcinoma (liver cancer). Gefitinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth
This phase II trial is to see if bevacizumab works in treating patients who have unresectable nonmetastatic liver cancer that has not spread to the main portal vein. Monoclonal antibodies, such as bevacizumab, can block cancer growth in different ways. Some block the ability of cancer cells to grow and spread. Others find cancer cells and help kill them or deliver cancer-killing substances to them.
Phase II trial to study the effectiveness of oxaliplatin in treating patients who have unresectable, recurrent or metastatic liver cancer. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die.
Phase I trial to study the effectiveness of erlotinib in treating patients who have unresectable liver cancer and liver dysfunction. Biological therapies such as erlotinib may interfere with the growth of tumor cells and slow the growth of the tumor
Phase II trial to study the effectiveness of erlotinib in treating patients who have liver cancer that cannot be surgically removed. Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth
Phase II trial to study the effectiveness of erlotinib in treating patients who have unresectable liver, bile duct, or gallbladder cancer. Biological therapies such as erlotinib may interfere with the growth of cancer cells and slow the growth of the tumor.