Treatment Trials

4 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Testing Lutetium Lu 177 Dotatate in Patients With Somatostatin Receptor Positive Advanced Bronchial Neuroendocrine Tumors
Description

This phase II trial studies the effect of lutetium Lu 177 dotatate compared to the usual treatment (everolimus) in treating patients with somatostatin receptor positive bronchial neuroendocrine tumors that have spread to other places in the body (advanced). Lutetium Lu 177-dotate is a radioactive drug. It binds to a protein called somatostatin receptor, which is found on some neuroendocrine tumor cells. Lutetium Lu 177-dotatate builds up in these cells and gives off radiation that may kill them. It is a type of radioconjugate and a type of somatostatin analog. Lutetium Lu 177 dotatate may be more effective than everolimus in shrinking or stabilizing advanced bronchial neuroendocrine tumors.

ACTIVE_NOT_RECRUITING
Testing Cabozantinib in Patients With Advanced Pancreatic Neuroendocrine and Carcinoid Tumors
Description

This phase III trial studies cabozantinib to see how well it works compared with placebo in treating patients with neuroendocrine or carcinoid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced). Cabozantinib is a chemotherapy drug known as a tyrosine kinase inhibitor, and it targets specific tyrosine kinase receptors, that when blocked, may slow tumor growth.

TERMINATED
Romidepsin in Treating Patients With Locally Advanced or Metastatic Neuroendocrine Tumors
Description

Phase II trial to study the effectiveness of romidepsin in treating patients who have locally advanced or metastatic neuroendocrine tumors. Drugs used in chemotherapy, such as romidepsin, work in different ways to stop tumor cells from dividing so they stop growing or die.

RECRUITING
A Study of Repotrectinib (TPX-0005) in Patients With Advanced Solid Tumors Harboring ALK, ROS1, or NTRK1-3 Rearrangements
Description

Phase 1 dose escalation will determine the first cycle dose-limiting toxicities (DLTs), the maximum tolerated dose (MTD), the biologically effective dose and recommended Phase 2 dose (RP2D) of repotrectinib given to adult subjects with advanced solid malignancies harboring an ALK, ROS1, NTRK1, NTRK2, or NTRK3 gene rearrangement. Midazolam DDI substudy will examine effect of of repotrectinib on CYP3A induction. Phase 2 will determine the confirmed Overall Response Rate (ORR) as assessed by Blinded Independent Central Review (BICR) of repotrectinib in each subject population expansion cohort of advanced solid tumors that harbor a ROS1, NTRK1, NTRK2, or NTRK3 gene rearrangement. The secondary objective will include the duration of response (DOR), time to response (TTR), progression-free survival (PFS), overall survival (OS) and clinical benefit rate (CBR) of repotrectinib in each expansion cohort of advanced solid tumors that harbor a ROS1, NTRK1, NTRK2, or NTRK3 gene rearrangement.