Treatment Trials

19 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Safety and Preliminary Anti-Tumor Activity of TYRA-430 in Advanced Hepatocellular Carcinoma and Other Solid Tumors With Activating FGF/FGFR Pathway Aberrations
Description

A Phase 1 study to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamic (PD), and preliminary antitumor activity of TYRA-430 in cancers with FGF/FGFR pathway aberrations, including locally advanced/metastatic hepatocellular carcinoma and other advanced solid tumors.

RECRUITING
A Study of TTI-101 as Monotherapy and in Combination in Participants With Locally Advanced or Metastatic, and Unresectable Hepatocellular Carcinoma
Description

The primary objectives of Cohort A Phase 1b are to evaluate the safety and tolerability of TTI-101 orally administered as a single agent to participants with locally advanced or metastatic, and unresectable Hepatocellular Carcinoma (HCC) and to determine the maximum tolerated dose (MTD) and/or recommended Phase 2 dose (RP2D) of TTI-101 as a single agent. The primary objectives of Cohort A Phase 2 are to evaluate the safety and tolerability of TTI-101 orally administered as a single agent at the RP2D to participants with locally advanced or metastatic, and unresectable HCC and to assess the preliminary efficacy of TTI-101 as a single agent in participants with locally advanced or metastatic, and unresectable HCC. The secondary objectives of Cohort A Phase 2 are to assess response, progression, survival, and pharmacokinetics. The primary objectives of Cohorts B and C Phase 1b are to evaluate the safety and tolerability of TTI-101 orally administered in combination with pembrolizumab therapy (Cohort B) and in combination with atezolizumab and bevacizumab therapy (Cohort C) to participants with locally advanced or metastatic, or unresectable HCC and to determine the MTD and/or RP2D of TTI-101 when used in combination with pembrolizumab therapy (Cohort B) and in combination with atezolizumab and bevacizumab therapy (Cohort C). The primary objectives of Cohorts B and C Phase 2 are to evaluate the safety and tolerability of TTI-101 orally administered in combination with pembrolizumab therapy (Cohort B) and in combination with atezolizumab and bevacizumab therapy (Cohort C) at the RP2D to participants with locally advanced or metastatic, and unresectable HCC and to assess the preliminary efficacy of TTI-101 in combination with pembrolizumab therapy (Cohort B) and in combination with atezolizumab and bevacizumab therapy (Cohort C) to participants with locally advanced or metastatic, and unresectable HCC. The secondary objectives of Cohorts B and C Phase 2 are to assess response, progression, survival, and pharmacokinetics.

RECRUITING
A Trial of Casdozokitug in Combination With Toripalimab Plus Bevacizumab in Participants With Unresectable and/or Locally Advanced or Metastatic Hepatocellular Carcinoma
Description

The main goals of this study are to evaluate the safety and efficacy of casdozokitug in combination with toripalimab plus bevacizumab and to define a recommended dose for casdozokitug in combination with toripalimab plus bevacizumab.

RECRUITING
Study of RP2 in Combination With Second-line Therapy in Patients With Locally Advanced Unresectable or Metastatic HCC
Description

The purpose of this study is to evaluate whether treatment with RP2 can provide efficacy as 2L treatment combined with atezolizumab plus bevacizumab in patients with locally advanced unresectable, recurrent, and/or metastatic HCC.

RECRUITING
Atezolizumab in Combination With a Multi-Kinase Inhibitor for the Treatment of Unresectable, Locally Advanced, or Metastatic Liver Cancer
Description

This phase II trial tests whether atezolizumab in combination with a multi-kinase inhibitor (cabozantinib or lenvatinib) compared to multi-kinase inhibitor alone in treating patients with liver cancer that cannot be removed by surgery (unresectable), has spread to has spread to nearby tissue or lymph nodes (locally advanced), or has spread to other places in the body (metastatic), for which the patient has received treatment in the past (previously treated). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cabozantinib and lenvatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving atezolizumab with cabozantinib or lenvatinib may kill more tumor cells in patients with liver cancer.

RECRUITING
Durvalumab and Tremelimumab After Radioembolization for the Treatment of Unresectable, Locally Advanced Liver Cancer
Description

This phase Ib trial investigates the side effects of durvalumab and tremelimumab after radioembolization (radiation particles against liver tumors) and to see how well they work in treating patients with liver cancer that cannot be removed by surgery (unresectable) and has spread to nearby tissues and lymph nodes (locally advanced). Durvalumab and tremelimumab are antibodies (proteins produced by the defense system of the body \[immune system\]) that have been made in the laboratory and may improve the ability of the immune system to detect and fight cancer.

COMPLETED
Sorafenib Tosylate With or Without Doxorubicin Hydrochloride in Treating Patients With Locally Advanced or Metastatic Liver Cancer
Description

This randomized phase III trial studies sorafenib tosylate and doxorubicin hydrochloride to see how well they work compared with sorafenib tosylate alone in treating patients with liver cancer that has spread to nearby tissue or lymph nodes or has spread to other places in the body. Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. It is not yet known whether giving sorafenib tosylate together with doxorubicin hydrochloride is more effective than sorafenib tosylate alone in treating liver cancer.

TERMINATED
AZD2171 in Treating Patients With Locally Advanced Unresectable or Metastatic Liver Cancer
Description

This phase II trial is studying how well AZD2171 works in treating patients with locally advanced unresectable or metastatic liver cancer. AZD2171 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor

RECRUITING
Personalized Neoantigen Peptide-Based Vaccine in Combination With Pembrolizumab for Treatment of Advanced Solid Tumors
Description

This phase I trial tests the safety and tolerability of an experimental personalized vaccine when given by itself and with pembrolizumab in treating patients with solid tumor cancers that have spread to other places in the body (advanced). The experimental vaccine is designed target certain proteins (neoantigens) on individuals' tumor cells. Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving the personalized neoantigen peptide-based vaccine with pembrolizumab may be safe and effective in treating patients with advanced solid tumors.

Conditions
Anatomic Stage III Breast Cancer AJCC v8Anatomic Stage IIIA Breast Cancer AJCC v8Anatomic Stage IIIB Breast Cancer AJCC v8Anatomic Stage IIIC Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Clinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage III Gastric Cancer AJCC v8Clinical Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage III Merkel Cell Carcinoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8Clinical Stage IV Gastric Cancer AJCC v8Clinical Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IV Merkel Cell Carcinoma AJCC v8Clinical Stage IVA Gastric Cancer AJCC v8Clinical Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Clinical Stage IVB Gastric Cancer AJCC v8Clinical Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Locally Advanced Cervical CarcinomaLocally Advanced Endometrial CarcinomaLocally Advanced Gastric AdenocarcinomaLocally Advanced Gastroesophageal Junction AdenocarcinomaLocally Advanced Head and Neck Squamous Cell CarcinomaLocally Advanced Hepatocellular CarcinomaLocally Advanced Lung Non-Small Cell CarcinomaLocally Advanced Malignant Solid NeoplasmLocally Advanced MelanomaLocally Advanced Merkel Cell CarcinomaLocally Advanced Renal Cell CarcinomaLocally Advanced Skin Squamous Cell CarcinomaLocally Advanced Triple-Negative Breast CarcinomaLocally Advanced Unresectable Breast CarcinomaLocally Advanced Unresectable Cervical CarcinomaLocally Advanced Unresectable Gastric AdenocarcinomaLocally Advanced Unresectable Gastroesophageal Junction AdenocarcinomaLocally Advanced Unresectable Renal Cell CarcinomaLocally Advanced Urothelial CarcinomaMetastatic Cervical CarcinomaMetastatic Endometrial CarcinomaMetastatic Gastric AdenocarcinomaMetastatic Gastroesophageal Junction AdenocarcinomaMetastatic Head and Neck Squamous Cell CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Lung Non-Small Cell CarcinomaMetastatic Malignant Solid NeoplasmMetastatic MelanomaMetastatic Merkel Cell CarcinomaMetastatic Renal Cell CarcinomaMetastatic Skin Squamous Cell CarcinomaMetastatic Triple-Negative Breast CarcinomaMetastatic Urothelial CarcinomaPathologic Stage III Cutaneous Melanoma AJCC v8Pathologic Stage III Gastric Cancer AJCC v8Pathologic Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage III Merkel Cell Carcinoma AJCC v8Pathologic Stage IIIA Cutaneous Melanoma AJCC v8Pathologic Stage IIIA Gastric Cancer AJCC v8Pathologic Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIB Cutaneous Melanoma AJCC v8Pathologic Stage IIIB Gastric Cancer AJCC v8Pathologic Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IIIC Cutaneous Melanoma AJCC v8Pathologic Stage IIIC Gastric Cancer AJCC v8Pathologic Stage IIID Cutaneous Melanoma AJCC v8Pathologic Stage IV Cutaneous Melanoma AJCC v8Pathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IV Merkel Cell Carcinoma AJCC v8Pathologic Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Pathologic Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage III Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage III Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IIIB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Prognostic Stage III Breast Cancer AJCC v8Prognostic Stage IIIA Breast Cancer AJCC v8Prognostic Stage IIIB Breast Cancer AJCC v8Prognostic Stage IIIC Breast Cancer AJCC v8Prognostic Stage IV Breast Cancer AJCC v8Skin Squamous Cell CarcinomaStage III Cervical Cancer AJCC v8Stage III Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Lung Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Uterine Corpus Cancer AJCC v8Stage IIIA Cervical Cancer AJCC v8Stage IIIA Hepatocellular Carcinoma AJCC v8Stage IIIA Lung Cancer AJCC v8Stage IIIA Uterine Corpus Cancer AJCC v8Stage IIIB Cervical Cancer AJCC v8Stage IIIB Hepatocellular Carcinoma AJCC v8Stage IIIB Lung Cancer AJCC v8Stage IIIB Uterine Corpus Cancer AJCC v8Stage IIIC Lung Cancer AJCC v8Stage IIIC Uterine Corpus Cancer AJCC v8Stage IIIC1 Uterine Corpus Cancer AJCC v8Stage IIIC2 Uterine Corpus Cancer AJCC v8Stage IV Cervical Cancer AJCC v8Stage IV Cutaneous Squamous Cell Carcinoma of the Head and Neck AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Uterine Corpus Cancer AJCC v8Stage IVA Cervical Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVA Lung Cancer AJCC v8Stage IVA Uterine Corpus Cancer AJCC v8Stage IVB Cervical Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVB Lung Cancer AJCC v8Stage IVB Uterine Corpus Cancer AJCC v8Triple-Negative Breast CarcinomaUnresectable Cervical CarcinomaUnresectable Endometrial CarcinomaUnresectable Gastric AdenocarcinomaUnresectable Gastroesophageal Junction AdenocarcinomaUnresectable Head and Neck Squamous Cell CarcinomaUnresectable Hepatocellular CarcinomaUnresectable Lung Non-Small Cell CarcinomaUnresectable Malignant Solid NeoplasmUnresectable MelanomaUnresectable Merkel Cell CarcinomaUnresectable Renal Cell CarcinomaUnresectable Skin Squamous Cell CarcinomaUnresectable Triple-Negative Breast CarcinomaUnresectable Urothelial Carcinoma
RECRUITING
A Phase II Study of Nivolumab + Ipilimumab in Advanced HCC Patients Who Have Progressed on First Line Atezolizumab + Bevacizumab
Description

This phase II trial tests whether nivolumab and ipilimumab works to shrink tumors in patients with liver cancer that has spread to nearby tissue or lymph nodes (locally advanced), has spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Nivolumab and ipilimumab may be effective in killing tumor cells in patients with liver cancer.

COMPLETED
Sorafenib and Nivolumab in Treating Participants With Unresectable, Locally Advanced or Metastatic Liver Cancer
Description

This phase II trial studies the best dose and side effects of sorafenib tosylate and nivolumab in treating patients with liver cancer that cannot be removed by surgery (unresectable), has spread to nearby tissues or lymph nodes (locally advanced) or to other places in the body (metastatic). Sorafenib tosylate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving sorafenib tosylate and nivolumab may work better in treating patients with liver cancer.

COMPLETED
Bevacizumab and Sorafenib as First-Line Therapy in Treating Patients With Locally Advanced or Metastatic Liver Cancer
Description

RATIONALE: Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Sorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Bevacizumab and sorafenib may also stop the growth of liver cancer by blocking blood flow to the tumor. PURPOSE: This randomized phase I/II trial is studying the best dose of bevacizumab when given together with sorafenib as first-line therapy in treating patients with locally advanced or metastatic liver cancer.(Phase I closed to accrual as of 11/03/2010)

Conditions
TERMINATED
Sorafenib in Treating Patients With Locally Advanced or Metastatic Liver Cancer and Cirrhosis
Description

RATIONALE: Sorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and best dose of sorafenib in treating patients with locally advanced or metastatic liver cancer and cirrhosis.

Conditions
COMPLETED
Selumetinib in Treating Patients With Locally Advanced or Metastatic Liver Cancer
Description

This phase II trial is studying selumetinib to see how well it works in treating patients with locally advanced or metastatic liver cancer. Selumetinib may stop the growth of tumor cells by blocking some of the enzymes needed for their growth.

COMPLETED
Octreotide in Treating Patients With Locally Advanced or Metastatic Liver Cancer
Description

RATIONALE: Octreotide may stop or slow the growth of tumor cells and may be an effective treatment for liver cancer. PURPOSE: This phase II trial is studying how well octreotide works in treating patients with locally advanced or metastatic liver cancer.

Conditions
COMPLETED
Cediranib Maleate in Treating Patients With Locally Advanced or Metastatic Liver Cancer
Description

AZD2171 (cediranib maleate) may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. This phase II trial is studying how well AZD2171 works in treating patients with locally advanced or metastatic liver cancer.

COMPLETED
Lapatinib in Treating Patients With Locally Advanced or Metastatic Biliary Tract or Liver Cancer That Cannot Be Removed By Surgery
Description

This phase II trial is studying how well lapatinib works in treating patients with locally advanced or metastatic biliary tract or liver cancer that cannot be removed by surgery. Lapatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

RECRUITING
Comparison of In-Home Versus In-Clinic Administration of Subcutaneous Nivolumab Through Cancer CARE (Connected Access and Remote Expertise) Beyond Walls (CCBW) Program
Description

This phase II trial compares the impact of subcutaneous (SC) nivolumab given in an in-home setting to an in-clinic setting on cancer care and quality of life. Currently, most drug-related cancer care is conducted in clinic type centers or hospitals which may isolate patients from family, friends and familiar surroundings for many hours per day. This separation adds to the physical, emotional, social, and financial burden for patients and their families. Traveling to and from medical facilities costs time, money, and effort and can be a disadvantage to patients living in rural areas, those with low incomes or poor access to transport. Studies have shown that cancer patients often feel more comfortable and secure being cared for in their own home environments. SC nivolumab in-home treatment may be safe, tolerable and/or effective when compared to in-clinic treatment and may reduce the burden of cancer and improve the quality of life in cancer patients.

COMPLETED
Testing the Addition of an Experimental Medication MK-3475 (Pembrolizumab) to Usual Anti-Retroviral Medications in Patients With HIV and Cancer
Description

This phase I trial studies the side effects of pembrolizumab in treating patients with human immunodeficiency virus (HIV) and malignant neoplasms that have come back (relapsed), do not respond to treatment (refractory), or have distributed over a large area in the body (disseminated). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.