Treatment Trials

13 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Epcoritamab and Rituximab for First-line Follicular Lymphoma
Description

The purpose of this study is to determine how effective and safe the combination of rituximab and epcoritamab is in treating patients with Follicular Lymphoma (FL) and who have not received other treatments for their lymphoma. The names of the study drugs involved in this study are: * Rituximab (a type of monoclonal antibody therapy) * Epcoritamab (a T-cell bispecific antibody)

COMPLETED
Peripheral Stem Cell Transplantation in Treating Patients With Relapsed Low- or Intermediate-Grade Non-Hodgkin's Lymphoma
Description

RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy. Treating the peripheral stem cells in the laboratory to remove any existing cancer cells may improve the effectiveness of the transplant. PURPOSE: Randomized phase II trial to compare the effectiveness of treated peripheral stem cells with that of untreated stem cells in patients who have relapsed low- or intermediate-grade non-Hodgkin's lymphoma.

Conditions
TERMINATED
Study Of Two Non-Myeloablative Stem Cell Transplant Strategies For Low-Grade Lymphoma And CLL
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Radiation therapy uses high-energy x-rays to damage tumor cells. Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy. Sometimes the transplanted cells are rejected by the body's normal tissues. Cyclosporine, mycophenolate mofetil, methotrexate, and tacrolimus may prevent this from happening. PURPOSE: Randomized phase II trial to compare the effectiveness of fludarabine plus total-body irradiation with that of combination chemotherapy followed by donor peripheral stem cell transplantation in treating patients who have relapsed non-Hodgkin's lymphoma or chronic lymphocytic leukemia.

UNKNOWN
Beta Alethine in Treating Patients With Low-Grade Lymphoma
Description

RATIONALE: Biological therapies such as beta alethine use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: Phase I/II trial to study the effectiveness of beta alethine in treating patients who have low-grade lymphoma.

Conditions
ACTIVE_NOT_RECRUITING
Ultra Low Dose Orbital Radiation Therapy in Treating Patients With Stage I-IV Indolent B-cell Lymphoma or Mantle Cell Lymphoma
Description

This phase II trial studies how well ultra low dose orbital radiation therapy works in treating patients with stage I-IV low grade (indolent) B-cell lymphoma or mantle cell lymphoma involving the orbit of the eye (space enclosed by the borders of the eye socket). Orbital radiation therapy uses external beam radiation to destroy cancer cells. Using ultra low dose orbital radiation therapy may be effective in treating indolent B-cell lymphoma or mantle cell lymphoma involving the eye and may have fewer side effects.

COMPLETED
Fludarabine Phosphate, Melphalan, and Low-Dose Total-Body Irradiation Followed by Donor Peripheral Blood Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This phase II trial studies how well giving fludarabine phosphate, melphalan, and low-dose total-body irradiation (TBI) followed by donor peripheral blood stem cell transplant (PBSCT) works in treating patients with hematologic malignancies. Giving chemotherapy drugs such as fludarabine phosphate and melphalan, and low-dose TBI before a donor PBSCT helps stop the growth of cancer and abnormal cells and helps stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from the donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cell from a donor can make an immune response against the body's normal cells. Giving tacrolimus, mycophenolate mofetil (MMF), and methotrexate after transplant may stop this from happening

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaAplastic AnemiaBurkitt LymphomaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaChronic Phase Chronic Myelogenous LeukemiaCongenital Amegakaryocytic ThrombocytopeniaDiamond-Blackfan AnemiaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaParoxysmal Nocturnal HemoglobinuriaPeripheral T-cell LymphomaPolycythemia VeraPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSecondary MyelofibrosisSevere Combined ImmunodeficiencySevere Congenital NeutropeniaShwachman-Diamond SyndromeSplenic Marginal Zone LymphomaT-cell Large Granular Lymphocyte LeukemiaWaldenstrom MacroglobulinemiaWiskott-Aldrich Syndrome
COMPLETED
Alemtuzumab, Fludarabine Phosphate, and Low-Dose Total Body Irradiation Before Donor Stem Cell Transplantation in Treating Patients With Hematological Malignancies
Description

This phase II trial studies the side effects and the best dose of alemtuzumab when given together with fludarabine phosphate and low-dose total body irradiation (TBI) and how well it works before donor stem cell transplant in treating patients with hematological malignancies. Giving chemotherapy and low-dose TBI before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. Also, monoclonal antibodies, such as alemtuzumab, can find cancer cells and either kill them or deliver cancer-killing substances to them without harming normal cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine (CSP) and mycophenolate mofetil (MMF) after transplant may stop this from happening.

Conditions
Adult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Adult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChildhood Burkitt LymphomaChildhood Chronic Myelogenous LeukemiaChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic Large Cell LymphomaChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Phase Chronic Myelogenous LeukemiaContiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaContiguous Stage II Grade 1 Follicular LymphomaContiguous Stage II Grade 2 Follicular LymphomaContiguous Stage II Marginal Zone LymphomaContiguous Stage II Small Lymphocytic LymphomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPeripheral T-cell LymphomaPreviously Treated Myelodysplastic SyndromesProgressive Hairy Cell Leukemia, Initial TreatmentRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSplenic Marginal Zone LymphomaStage I Adult Diffuse Small Cleaved Cell LymphomaStage I Childhood Anaplastic Large Cell LymphomaStage I Childhood Large Cell LymphomaStage I Cutaneous T-cell Non-Hodgkin LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Mycosis Fungoides/Sezary SyndromeStage I Small Lymphocytic LymphomaStage II Childhood Anaplastic Large Cell LymphomaStage II Childhood Large Cell LymphomaStage II Cutaneous T-cell Non-Hodgkin LymphomaStage II Mycosis Fungoides/Sezary SyndromeStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Childhood Anaplastic Large Cell LymphomaStage III Childhood Large Cell LymphomaStage III Cutaneous T-cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Mycosis Fungoides/Sezary SyndromeStage III Small Lymphocytic LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Large Cell LymphomaStage IV Cutaneous T-cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Mycosis Fungoides/Sezary SyndromeStage IV Small Lymphocytic LymphomaT-cell Large Granular Lymphocyte LeukemiaWaldenström Macroglobulinemia
COMPLETED
Fludarabine Phosphate, Low-Dose Total-Body Irradiation, and Donor Stem Cell Transplant Followed by Cyclosporine, Mycophenolate Mofetil, Donor Lymphocyte Infusion in Treating Patients With Hematopoietic Cancer
Description

This clinical trial studies fludarabine phosphate, low-dose total-body irradiation, and donor stem cell transplant followed by cyclosporine, mycophenolate mofetil, and donor lymphocyte infusion in treating patients with hematopoietic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also keep the patient's immune response from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

Conditions
Acute Undifferentiated LeukemiaAdult Nasal Type Extranodal NK/T-cell LymphomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-cell LymphomaChildhood Burkitt LymphomaChildhood Diffuse Large Cell LymphomaChildhood Grade III Lymphomatoid GranulomatosisChildhood Immunoblastic Large Cell LymphomaChildhood Myelodysplastic SyndromesChildhood Nasal Type Extranodal NK/T-cell LymphomaChronic Myelomonocytic LeukemiaCutaneous B-cell Non-Hodgkin Lymphomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueHepatosplenic T-cell LymphomaIntraocular LymphomaJuvenile Myelomonocytic LeukemiaMast Cell LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableMyeloid/NK-cell Acute LeukemiaNodal Marginal Zone B-cell LymphomaNoncutaneous Extranodal LymphomaPeripheral T-cell LymphomaPost-transplant Lymphoproliferative DisorderPreviously Treated Myelodysplastic SyndromesPrimary Systemic AmyloidosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-cell Leukemia/LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Renal Cell CancerRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaSmall Intestine LymphomaSplenic Marginal Zone LymphomaStage II Multiple MyelomaStage III Multiple MyelomaT-cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenström Macroglobulinemia
COMPLETED
Fludarabine Phosphate, Low-Dose Total Body Irradiation, and Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies or Kidney Cancer
Description

This clinical trial studies fludarabine phosphate, low-dose total body irradiation, and donor stem cell transplant in treating patients with hematologic malignancies or kidney cancer. Giving chemotherapy drugs, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine before the transplant and cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Del(5q)Adult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)B-cell Chronic Lymphocytic LeukemiaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Myelodysplastic SyndromesChildhood Renal Cell CarcinomaChronic Phase Chronic Myelogenous LeukemiaClear Cell Renal Cell Carcinomade Novo Myelodysplastic SyndromesExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueNodal Marginal Zone B-cell LymphomaPreviously Treated Myelodysplastic SyndromesRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent Small Lymphocytic LymphomaRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRefractory Multiple MyelomaRelapsing Chronic Myelogenous LeukemiaSplenic Marginal Zone LymphomaStage III Renal Cell CancerStage IV Renal Cell CancerT-cell Large Granular Lymphocyte LeukemiaType 1 Papillary Renal Cell CarcinomaType 2 Papillary Renal Cell CarcinomaWaldenström Macroglobulinemia
COMPLETED
Prevention of Infection in Patients With Hematologic Cancer and Persistent Fever Caused by a Low White Blood Cell Count
Description

RATIONALE: Antibiotic therapy may prevent the development of infection in patients with hematologic cancer and the persistent fever caused by a low white blood cell count. It is not yet known which regimen of antibiotics is most effective in preventing infection in these patients. PURPOSE: Randomized phase III trial to study the effectiveness of piperacillin-tazobactam with or without vancomycin in reducing fever in patients who have leukemia, lymphoma, or Hodgkin's disease.

COMPLETED
Low-Dose Total Body Irradiation and Donor Peripheral Blood Stem Cell Transplant Followed by Donor Lymphocyte Infusion in Treating Patients With Non-Hodgkin Lymphoma, Chronic Lymphocytic Leukemia, or Multiple Myeloma
Description

This pilot clinical trial studies low-dose total body irradiation and donor peripheral blood stem cell transplant followed by donor lymphocyte infusion in treatment patients with non-Hodgkin lymphoma, chronic lymphocytic leukemia, or multiple myeloma. Giving total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Once the donated stem cells begin working, the patient's immune system may see the remaining cancer cells as not belonging in the patient's body and destroy them. Giving an infusion of the donor's white blood cells (donor lymphocyte infusion) may boost this effect.

WITHDRAWN
Alemtuzumab Plus Fludarabine and Melphalan With or Without Cyclosporine, Mycophenolate Mofetil, and Low-Dose Total-Body Irradiation Therapy Followed by Donor Peripheral Stem Cell Transplant in Treating Patients With Hematologic Cancer
Description

RATIONALE: Giving low doses of chemotherapy, monoclonal antibodies, and radiation therapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil before transplant may stop this from happening. PURPOSE: This phase I/II trial is studying the side effects of alemtuzumab, fludarabine, and melphalan with or without cyclosporine, mycophenolate mofetil, and total-body irradiation before donor peripheral blood stem cell transplant and to see how well they work in treating patients with relapsed or refractory hematologic cancer.

COMPLETED
Low-Dose Fludarabine, Busulfan, and Anti-Thymocyte Globulin Followed By Donor Umbilical Cord Blood Transplant in Treating Patients With Advanced Hematologic Cancer
Description

RATIONALE: Giving chemotherapy before a donor umbilical cord blood transplant helps stop both the growth of cancer cells and the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving chemotherapy, such as fludarabine and busulfan, and antithymocyte globulin before transplant and tacrolimus and mycophenolate mofetil after transplant may stop this from happening. PURPOSE: This clinical trial is studying how well giving low-dose fludarabine and busulfan together with anti-thymocyte globulin, followed by donor umbilical cord blood transplant works in treating patients with advanced hematologic cancer.