8 Clinical Trials for Various Conditions
The purpose of this randomized controlled trial is to assess and compare radiographic and clinical outcomes in patients who are to undergo combined interbody/posterolateral lumbar fusion procedures, supplemented with pedicle screw instrumentation, using one of the following interbody cages; the Nexxt Spine Nexxt MatrixxTM 3D-printed titanium cage or the HonourTM poly-ether-ether-ketone cage.
This study is designed to evaluate the clinical utility of a known intraoperative neuromonitoring modality (SSEP) using saphenous nerve as the site of stimulation to identify changes to the lumbar nerves which may be at risk during the lateral lumbar interbody fusion (LLIF) procedure.
Posterior spinal surgery for adult deformity is associated with high incidence of blood loss and need for blood transfusion and intraoperative blood salvage, with associated increased cost and risk for perioperative complications. Tranexamic acid (TXA) is relatively inexpensive anti-fibrinolytic agent that has been proven effective for decreasing intraoperative blood loss in various surgical specialties. Intravenous TXA (ivTXA) is routinely used at our institution for adult spinal deformity cases. Meanwhile, topical TXA (tTXA) is an attractive alternative/adjunct to ivTXA used with good results in orthopedic arthroplasty and cardiac surgery. To the investigators' knowledge, no data exists in the literature on the use of tTXA in either adult or pediatric spinal deformity surgery. The goal of this study is to determine the role tTXA has an adjunct to ivTXA in decreasing perioperative blood loss, drainage, transfusion requirements and length of stay following adult deformity spine surgery.
The purpose of this study is to compare outcomes of subjects undergoing multilevel lumbar fusion (MLF) surgery with and without the iFuse 3-D implants in the "bedrock" trajectory.
This study is being done to compare people who had a standard of care spinal fusion using part of their local bone graft (a small amount of bone from the region of the spine where the fusion is occurring) to correct an adult spinal deformity and people who will have a standard of care spinal fusion using a mixture of Actifuse ABX® (a market approved bone graft substitute) and a local bone graft (a small amount of bone from the region of the spine where the fusion is occurring). This study will compare the outcomes of both groups to help the Orthopaedic surgeon conducting spinal fusions in the future. Investigators expect that Actifuse ABX® will be as good if not better than just a local bone graft.
The objective of this study is to evaluate the safety and performance of NuVasive interbody implants when used during thoracic and/or lumbar spine surgery as measured by reported complications, radiographic outcomes, and patient-reported outcomes. This study is being undertaken to identify possible residual risks and to clarify mid- to long-term clinical performance that may affect the benefit/risk ratios of these interbody implants.
The brain and spinal cord are surrounded by fluid called cerebrospinal fluid (CSF). The CSF flows through channels in the brain and around the spinal cord. Occasionally, people are born with malformations of these channels. Syringomyelia is a pocket within the CSF channels that results from abnormal CSF flow. Syringomyelia is associated with problems in the nervous system. Patients with syringomyelia may be unable to detect sensations of pain and heat. If the condition is not treated it can worsen. Treatment of this condition is surgical. It requires that the flow of CSF is returns to normal. There are many different treatment options, but no one procedure has been shown to be significantly better than any other. In this study, researchers would like to learn more about how the CSF pressure and flow contribute to the progression of syringomyelia. Ultrasounds and magnetic resonance imaging (MRI) will be used to evaluate the anatomy of the brain. Researchers hope that information gathered about anatomy and measures of CSF pressure and flow can be used later to develop an optimal surgical treatment for syringomyelia.
The primary purpose of this study is to track and document the clinical outcomes of patients with radicular pathology following posterior lateral fusion with the Dynesys Spinal System. Secondary purpose of this study is to assess outcomes with historical controls along a continuum of motion and anatomy sparing procedures.