4,757 Clinical Trials for Various Conditions
This phase II trial tests how well craniospinal irradiation (CSI) using photon volumetric modulated arc radiotherapy (VMAT) works in treating patients with breast cancer or non-small cell lung cancer (NSCLC) that has spread from the original (primary) tumor to the cerebrospinal fluid and meninges (thin layers of tissue that cover and protect the brain and spinal cord) (leptomeningeal disease). Radiation therapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. CSI (radiation therapy directed at the brain and spinal cord to kill tumor cells) may be able to target all of the areas of possible leptomeningeal tumor spread. Photon-VMAT-CSI may be an effective treatment option for patients with leptomeningeal disease secondary to breast cancer or NSCLC.
The main goals are after treatment given before surgery, to measure the number of people who have no signs of cancer cells in tumors and lymph nodes removed during surgery; and to learn about whether the cancer gets smaller or goes away by measuring the number of people with a certain number of living cancer cells in the tumor removed during surgery.
This phase II clinical trial studies how well craniospinal irradiation (CSI) with hippocampal avoidance, using proton therapy or volumetric modulated arc therapy (VMAT), works in treating patients with breast cancer or non-small cell lung cancer (NSCLC) that has spread from the original (primary) tumor to the cerebrospinal fluid (CSF) and meninges (thin layers of tissue that cover and protect the brain and spinal cord) (leptomeningeal metastases). Radiation therapy is an effective treatment in relieving localized symptoms caused by leptomeningeal metastases. However, the type of radiation therapy typically used does not prevent the spread of leptomeningeal disease. CSI (radiation therapy directed at the brain and spinal cord to kill tumor cells) may be able to target all of the areas of possible leptomeningeal tumor spread. CSI may however result in significant neurological side effects due to radiation damage to a part of the brain called the hippocampus. Hippocampal avoidance (HA) reduces the amount of radiation to the hippocampus. Proton or VMAT CSI with HA may be an effective treatment while reducing neurological side effects for patients with leptomeningeal metastases from breast cancer and NSCLC.
This study evaluates the effectiveness of robotic biopsies in providing information about hereditary or cancer specific genetic variants that may have a role in diagnosis of cancer and to develop genetic results and medical record databank for future studies.
This clinical trial tests the effectiveness of an interactive time-restricted diet intervention (txt4fasting) in reducing neurocognitive decline and improving survival outcomes after stereotactic radiosurgery in patients with breast or lung cancer that has spread to the brain (brain metastases). Lung cancer and breast cancer are the two most frequent causes of brain metastases. The diagnosis of brain metastases is associated with poorer survival and tumor-induced and treatment-related side effects. Stereotactic radiosurgery is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. Patients who receive stereotactic radiosurgery for brain metastases may experience less neurocognitive side effects than with other types of brain radiation, but may still be at risk for their brain metastases growing, spreading, or getting worse. Patients with obesity and diabetes have been shown to have worse survival and increased radiation-related side effects. Evidence demonstrates that simply changing meal timing can have a positive impact on multiple health outcomes. Time-restricted eating, or prolonged nighttime fasting, has been proven to have positive effects on heart disease risk reduction, weight control management and chemotherapy side effect reduction. Txt4fasting may be effective in decreasing neurocognitive decline and improving survival outcomes in patients undergoing stereotactic radiosurgery for brain metastases from breast or lung cancer.
This phase II trial tests how well cemiplimab works in treating patients with PD-L1 \>= 50% non-small cell lung cancer (NSCLC) that has spread from where it first started (primary site) to the brain (metastases). Approximately 10% of patients diagnosed with metastatic NSCLC present with brain metastases and another 30% develop brain metastases during the illness. Currently, the management of brain metastases relies on stereotactic radiosurgery (SRS), which has high rates of local control, but in combination with systemic therapy, can cause certain toxicities, including central nervous system (CNS) necrosis or potential cognitive changes or memory deficits. Additionally, in patients with numerous brain metastases, whole brain radiation (WBRT) is recommended, leading to significant neurocognitive deficits. Immunotherapy with monoclonal antibodies, such as cemiplimab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. However, there is little data on the effectiveness of newer systemic therapies, such as immunotherapy, in penetrating and treating previously untreated brain metastases. Cemiplimab without upfront SRS or WBRT for asymptomatic brain metastases may help delay the need for radiation in patients with untreated brain metastases from PD-L1 \>= 50% NSCLC.
This study will evaluate the safety, MTD and/or RP2D, PK, and clinical activity of the combination of adagrasib with nab-sirolimus in patients with advanced solid tumors/NSCLC with a KRAS G12C mutation.
This phase II trial tests the safety of positron emission tomography (PET) guided stereotactic body radiation therapy (SBRT) and how well it works to treat non-small cell lung cancer (NSCLC), melanoma, and renal cell carcinoma (RCC) that has up to 5 sites of progression (oligoprogression) compared to standard SBRT. SBRT uses special equipment to position a patient and deliver radiation to tumors with high precision. This method may kill tumor cells with fewer doses over a shorter period and cause less damage to normal tissue. A PET scan is an imaging test that looks at your tissues and organs using a small amount of a radioactive substance. It also checks for cancer and may help find cancer remaining in areas already treated. Using a PET scan for SBRT planning may help increase the dose of radiation given to the most resistant part of the cancer in patients with oligoprogressive NSCLC, melanoma, and RCC.
This phase II trial tests how well olanzapine works in managing cancer cachexia in patients experiencing esophagogastric, hepatopancreaticobiliary, colorectal, or lung cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) or that has spread from where it first started (primary site) to other places in the body (metastatic) -associated appetite loss while receiving non-curative cancer therapy. Loss of appetite ("anorexia") in the setting of cancer is a key feature of "cachexia," a syndrome associated with loss of weight and muscle as well as weakness and fatigue. Olanzapine is a drug that targets key neurotransmitters (a type of molecule in the central nervous system that transmits messages to the rest of the body) that may stimulate appetite, restore caloric intake, minimize weight loss, and improve quality of life (QOL).
This is a study to investigate the efficacy and safety of an infusion of IOV-4001 in adult participants with unresectable or metastatic melanoma or advanced non-small-cell lung cancer (NSCLC).
The primary objectives of this study are to evaluate the safety and tolerability of AMG 794 in adult participants and to determine the optimal biological active dose (OBD), at or below the maximum tolerated dose (MTD) with MTD 1 as the maximum tolerated starting dose and MTD 2 as the maximum tolerated target dose.
This is a Phase 2b, multicenter, open-label study to evaluate the safety and efficacy of Sutetinib Maleate Capsule in Locally Advanced or Metastatic NSCLC (Non-resistant Uncommon EGFR Mutations Only, Including L861Q, G719X, and/or S768I)
This phase I trial studies the safety of personalized neo-antigen peptide vaccine in treating patients with stage IIIC-IV melanoma, hormone receptor positive HER2 negative breast cancer that has spread from where it first started (primary site) to other places in the body (metastatic) or does not respond to treatment (refractory) or stage III-IV non-small cell lung cancer. Personalized neo-antigen peptide vaccine is a product that combines multiple patient specific neo-antigens. Given personalized neo-antigen peptide vaccine together with Th1 polarizing adjuvant poly ICLC may induce a polyclonal, poly-epitope, cytolytic T cell immunity against the patient's tumor.
This phase II trial studies the use of Ion robotic bronchoscope with a mobile computed tomography (CT) scanner to biopsy tumors and inject a fluorescent dye called indocyanine green to mark the tumor during surgery in patients with stage I non-small cell lung cancer or cancer that has spread to the lung (lung metastases). Sometimes small tumors or those that are not on the surface of the lung can be challenging to remove without making larger incisions. Injecting the dye, may help doctors see the tumor more easily, which may allow for smaller incisions and by being able to see the tumor, doctors may be better able to decide where to make the incisions in order to get all of the tumor out.
This phase II trial investigates the side effects of tocilizumab, ipilimumab, and nivolumab in treating patients with melanoma, non-small cell lung cancer, or urothelial carcinoma that has spread to nearby tissue or lymph nodes (locally advanced). Immunotherapy with monoclonal antibodies, such as ipilimumab and nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Tocilizumab is a monoclonal antibody that may interfere with the immune system to decrease immune-related toxicities. Giving tocilizumab, ipilimumab, and nivolumab may kill more tumor cells.
This phase I/II trial investigates the side effects of genetically engineered cells called FH-MagIC TCR-T cells and how well they work with atezolizumab in treating patients with triple negative breast cancer, urothelial cancer, or non-small cell lung cancer that has spread to other places in the body (metastatic). T cells are infection fighting blood cells that can kill tumor cells. The T cells given in this study will come from the patient and will have a new gene put in them that makes them able to recognize MAGE-A1, a protein on the surface of tumor cells. These MAGE-A1-specific T cells may help the body's immune system identify and kill MAGE-A1 tumor cells. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving FH-MagIC TCR-T cells with atezolizumab may help treat patients with triple negative breast cancer, urothelial cancer, or non-small cell lung cancer.
This phase I trial seeks to find out the best dose, possible benefits and/or side effects of entinostat in combination with atezolizumab, carboplatin and etoposide for the treatment of previously untreated aggressive lung cancer that has spread (extensive-stage small cell lung cancer). Entinostat and etoposide may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Carboplatin is a chemotherapy drug that attaches to deoxyribonucleic acid (DNA) and may kill tumor cells. Giving entinostat in combination with atezolizumab, carboplatin and etoposide may work better than atezolizumab, carboplatin and etoposide alone.
This phase II trial investigates how stereotactic radiosurgery affects brain functions while treating patients with small cell lung cancer that has spread to the brain (brain metastasis). Standard of care treatment consists of whole brain radiation therapy, which targets the entire brain, and may result in side effects affecting the nervous system. Stereotactic radiosurgery only targets areas of the brain that are suspected to be affected by the disease. The purpose of this trial is to learn if and how patients' brain functions are affected by the use of stereotactic radiosurgery rather than whole brain radiation therapy in managing brain metastasis caused by small cell lung cancer. Stereotactic radiosurgery may help patients avoid nervous system side effects caused by whole brain radiation therapy.
This phase I trial tests the safety, side effects and best dose of BAY 1895344 when given together with usual chemotherapy (irinotecan or topotecan) in treating patients with solid tumors that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced), with a specific focus on small cell lung cancer, poorly differentiated neuroendocrine cancer, and pancreatic cancer. BAY 1895344 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as irinotecan and topotecan, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Adding BAY 1895344 to irinotecan or topotecan may be safe and tolerable in treating patients with advanced solid tumors.
This phase I/Ib trial studies the side effects and best dose of CB-839 HCl when given together with sapanisertib in treating patients with non-small cell lung cancer that has spread to other places in the body (advanced). CB-839 HCl and sapanisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase I trial studies the side effects and best dose of WSD0922-FU for the treatment of glioblastoma, anaplastic astrocytoma, or non-small cell lung cancer that has spread to the central nervous system (central nervous system metastases). WSD0922-FU is a targeted treatment which blocks the EGFR protein - a strategy that has led to a lot of benefit in patients with many different cancers. WSD0922-FU may also be able to get into cancers in the brain and spinal cord and help patients with brain and spinal cord cancers.
This study will combine cabozantinib with pemetrexed to treat patients with non-small cell lung cancer, urothelial cancer and advanced malignant mesothelioma. This study will test the safety of both drugs used together and see what effect (good or bad) it has no participants and their cancer.
This phase Ib/II trial studies the best dose of temozolomide and how well it works with niraparib and atezolizumab in treating patients with solid tumors that have spread to other places in the body (advanced) and extensive-stage small cell lung cancer with a complete or partial response to platinum-based first-line chemotherapy. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Niraparib is an inhibitor of PARP, an enzyme that helps repair deoxyribonucleic acid (DNA) when it becomes damaged. Blocking PARP may help keep cancer cells from repairing their damaged DNA, causing them to die. PARP inhibitors are a type of targeted therapy. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving temozolomide, niraparib and atezolizumab may work better in treating patients with advanced solid tumors and extensive-stage small cell lung cancer.
This phase I trial studies the side effects and how well light dosimetry system works during photodynamic therapy with porfimer sodium in treating participants with malignant mesothelioma , non-small cell lung cancer or any other malignancy with pleural disease undergoing surgery. Light dosimetry measures the amount of laser light given during photodynamic therapy. Photodynamic therapy uses a drug, such as porfimer sodium, that becomes active when it is exposed to light. The activated drug may kill tumor cells. Using light dosimetry for intraoperative photodynamic therapy may help doctors estimate how much light is delivered during photodynamic therapy and decide if the treatment should be stopped or continued.
This phase I/II trial studies the best dose and timing of panitumumab-IRDye800 in detecting cancer in participants with lung cancer during the surgery. Panitumumab-IRDye800 is a combination of the antibody drug panitumumab and IRDye800CW, an investigational dye that can be seen using a special camera. Panitumumab-IRDye800 may attach to tumor cells and make them more visible during surgery in patients with lung cancer.
This phase II trial studies how well regorafenib works together with methotrexate in treating participants with metastatic non-squamous non-small cell lung cancer with tumors that harbor a KRAS mutation. Regorafenib is a targeted therapy that works on different cancer pathways to stop the growth of tumor cells and stop them from spreading. Methotrexate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving regorafenib and methotrexate together may work in treating participants with KRAS mutated non-small cell lung cancer.
This pilot phase I/II trial studies how well a continuous positive airway pressure device or deep inspiration breath hold works in reducing tumor movement in patients undergoing stereotactic body radiation therapy (SBRT) for lung cancer. The continuous positive airway pressure device works by blowing air into the lungs while patients wear a face mask or nozzle to help expand their airways and lungs. Deep inspiration breath hold is a standard technique that uses active breath-holding to restrict movement of the body. Using a continuous positive airway pressure device may work better than deep inspiration breath hold in lowering the amount of tumor movement during stereotactic radiation body therapy.
This phase I/II trial studies the best dose and side effects of navitoclax and how well it works when given together with vistusertib in treating patients with small cell lung cancer and solid tumors that have come back (relapsed). Drugs used in chemotherapy, such as navitoclax, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Vistusertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving navitoclax and vistusertib may work better than navitoclax alone in treating patients with small cell lung cancer and solid tumors.
The investigators will evaluate the feasibility of implementing a low-intensity, patient-centered activity regimen (PCAR) that prioritizes education and communication over a 12-week period in advanced stage lung cancer patients. The primary outcomes will include number of patients increasing their overall step count over the study period and adherence to step count recommendations. Secondary outcomes will include quality of life (QoL), dyspnea, and depression scores before and after the intervention as well as a patient feedback questionnaire (to guide further interventions). The goals are to increase overall step count and obtain adherence of \>50% of participants. The investigators will also assess whether the physical activity regimen influences markers of inflammation and glucose control and novel markers of cancer.
This phase II trial studies how well osimertinib with or without bevacizumab works in treating patients with EGFR positive non-small cell lung cancer that has spread to the brain (brain metastases). Osimertinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Bevacizumab may stop or slow non-small cell lung cancer by blocking the growth of new blood vessels necessary for tumor growth. Giving osimertinib with or without bevacizumab may work better in treating patients with non-small cell lung cancer.