Treatment Trials

1,338 Clinical Trials for Various Conditions

Focus your search

NOT_YET_RECRUITING
Virus-Based Gene Therapy (AdV-HSV1-TK and AdV-Flt3L) in Combination With Valacyclovir for the Treatment of Pediatric and Young Adult Patients With Resectable, Recurrent Primary Malignant Brain Tumors
Description

This phase I trial tests the safety, side effects and best dose of AdV-HSV1-TK and AdV-Flt3L in combination with valacyclovir for the treatment of patients with primary cancerous (malignant) brain tumors that can be removed by surgery (resectable) and that have come back after a period of improvement (recurrent). AdV-HSV1-TK and AdV-Flt3L use a virus modified in the laboratory to kill tumor cells and stimulate the immune system to recognize the tumor cells as "invaders" which can lead to tumor shrinkage. For this process to work, an oral anti-herpes medication called valacyclovir is also needed. Giving AdV-HSV1-TK, AdV-Flt3L and valacyclovir may be safe, tolerable and/or effective in treating patients with resectable, recurrent primary malignant brain tumors.

NOT_YET_RECRUITING
An Investigational Scan (18F-DOPA PET/CT) for Improving the Clinical Management of Brain Tumors
Description

This phase II trial studies how well the addition of 18F-DOPA (amino acid) positron emission tomography (PET)/computed tomography (CT) to standard of care (SOC) imaging can improve the clinical management of patients with brain tumors in over 50% of cases. PET is an imaging test that helps to measure the information about functions of tissues and organs within the body. A PET scan uses a radioactive drug (radiotracer) to show this activity. CT scan uses X-rays to create images of the bones and internal organs within the body. Combining a PET scan with a CT scan can help make the images easier to interpret. PET/CT scans are hybrid scanners that combine both of the two modalities into a single scan. This allows images of both anatomy (CT) and function (PET) to be taken during the same scan. The 18F-DOPA PET/CT scan is done with a very small amount of a radioactive tracer called FDOPA. The PET/CT scan is then used to detect the location of tumors. Using the 18FDOPA-PET/CT scan in addition to the SOC scan may improve the clinical management of patients with brain tumors.

RECRUITING
Zr-89 Crefmirlimab Berdoxam and Immuno-Positron Emission Tomography for the Imaging of Patients With Resectable Brain Tumors
Description

This phase I trial studies how well zirconium (Zr)-89 crefmirlimab berdoxam and immuno-positron emission tomography (PET) identifies areas of immune cell activity in patients with brain tumors that can be removed by surgery (resectable). One important predictor of the immune response is the presence and change in CD8 positive (+) tumor infiltrating lymphocytes (TIL) cells. Identifying the presence and changes in CD8+ cells can be challenging, particularly for participants with central nervous system (CNS) tumors, and usually requires invasive procedures such as repeat tissue biopsies, which may not accurately represent the immune status of the entire tumor. Zr-89 crefmirlimab berdoxam is known as a radioimmunoconjugate which consists of a radiolabeled anti-CD8+ minibody whose uptake can be imaged with PET. Upon administration, Zr 89 crefmirlimab berdoxam specifically targets and binds to the CD8+ cells. This enables PET imaging and may detect CD8+ T-cell distribution and activity and may help determine the patient's response to cancer immunotherapeutic agents more accurately. Giving Zr-89 crefmirlimab berdoxam along with undergoing immuno-PET imaging may work better at identifying immune cell activity in patients with resectable brain tumors.

ACTIVE_NOT_RECRUITING
Expert Consensus and Artificial Intelligence in Medical Decision Making in Patients with Malignant Brain Tumors
Description

Nearly 23,000 adults are diagnosed with primary central nervous system (CNS) malignancy yearly. An additional 200,000 adults are diagnosed with brain metastasis. There are significant variations in CNS tumor treatment. However, due to significant heterogeneity in patient baseline factors, identifying unwarranted variation is challenging. Ghogawala et al have previously demonstrated that, among patients undergoing surgical treatment of cervical myelopathy and lumbar degenerative spinal disease, an expert panel consisting of surgeon experts can identify variations in proposed surgical procedure and demonstrated superior patient outcomes when the surgery performed matched the procedure recommended by expert consensus. Expert panel surveys have not previously been used to identify variations in care among patients with CNS malignancy. The primary aim is to determine whether patient outcomes are superior when treatment aligns with recommendations made by a clinical expert neurosurgical panel. The study also seek to identify patient factors that predispose to variability in care. Our long-term aim is to determine whether predictive artificial learning algorithms can achieve the same outcomes, or better, as clinical expert panels, but with greater efficiency and greater capacity to be available for more patients. The investigators hypothesize that: * When a team of 10 medical experts has greater than 80% consensus regarding optimal treatment and when the doctor and patient select that specific treatment, the outcome is superior than when a patient and doctor select an alternative procedure. * When a team of 10 medical experts has greater than 80% consensus regarding optimal treatment, the structured data used by the experts can be processed and trained by computing algorithms to predict the pattern recognized by the experts - i.e. - the computer can predict how an expert panel would vote. Procedures include the following: 1. Chart review portion of study: Patients will be identified from case logs of the principal investigators from July 2017 through July 2023. Data will be collected retrospectively and will include age, non-identifier demographics, diagnosis details, operative/treatment characteristics, post-treatment characteristics, and follow-up characteristics. Images reviewed will include pre and post-treatment MRIs obtained as part of routine care. Data will be abstracted from the medical record (Epic/Soarian and PACS) and recorded in an excel database. 2. Survey portion of study: De-identified structured radiographic data and a brief clinical vignette without patient identifiers will be uploaded to Acesis Healthcare Process Optimization Platform (http://www.acesis.com/our-platform). A survey will be generated by Acesis and emailed to the subject experts/participants. This portion is prospective. 3. Cohort definitions: 1. Patients will be assigned to either "expert-treatment consensus" or "no expert-treatment consensus" arms based on whether greater than 80% consensus is achieved 2. Patients will be assigned to either "Expert consensus-aligned" or "Expert consensus - unaligned" arms based on whether expert survey results match actual treatment given. 4. Data will then be analyzed using appropriate packages with SAS statistical analysis software. Survival analysis will be performed to determine whether consensus predicts improved progression free survival (PFS). 5. The structured and de-identified radiographic images used by the experts in surveys will be used for training and development of an AI algorithm. The aim of this portion of the study is to determine whether standardized and structured imaging can be used to train an algorithm to predict whether expert consensus is achieved and the recommended treatment.

RECRUITING
Atovaquone Combined with Radiation in Children with Malignant Brain Tumors
Description

The goal of this interventional study is to Assess the safety and tolerability of atovaquone in combination with standard radiation therapy (RT) for the treatment of pediatric patients with newly diagnosed pediatric high-grade glioma/diffuse midline glioma/diffuse intrinsic pontine glioma (pHGG/DMG/DIPG). The secondary aim is to assess the safety and tolerability of longer-term atovaquone treatment for pediatric patients with relapsed or progressed pHGG/DMG/DIPG and medulloblastoma (MB) or pHGG/DMG/DIPG after completion of RT and before progression.

RECRUITING
Immunotherapy for Malignant Pediatric Brain Tumors Employing Adoptive Cellular Therapy (IMPACT)
Description

This is an open-label phase 1 safety and feasibility study that will employ multi-tumor antigen specific cytotoxic T lymphocytes (TSA-T) directed against proteogenomically determined personalized tumor-specific antigens (TSA) derived from a patient's primary brain tumor tissues. Young patients with embryonal central nervous system (CNS) malignancies typically are unable to receive irradiation due to significant adverse effects and are treated with intensive chemotherapy followed by autologous stem cell rescue; however, despite intensive therapy, many of these patients relapse. In this study, individualized TSA-T cells will be generated against proteogenomically determined tumor-specific antigens after standard of care treatment in children less than 5 years of age with embryonal brain tumors. Correlative biological studies will measure clinical anti-tumor, immunological and biomarker effects.

ACTIVE_NOT_RECRUITING
CALM: Managing Distress in Malignant Brain Cancer
Description

The purpose of this study is to test an empirically supported psychotherapeutic intervention, Managing Cancer and Living Meaningfully (CALM), compared to treatment as usual (TAU) in those with malignant brain cancer diagnoses.

RECRUITING
Post-Operative Dosing of Dexamethasone in Patients with Brain Tumors After a Craniotomy, PODS Trial
Description

This phase II trial tests the effect of decreasing (tapering) doses of dexamethasone on steroid side effects in patients after surgery to remove (craniotomy) a brain tumor. Steroids are the gold standard post-surgery treatment to reduce swelling (edema) at the surgical site to reduce neurological symptoms. Although, corticosteroids reduce edema, they have side effects including high blood sugar, high blood pressure, and can impair wound healing. Dexamethasone is in a class of medications called corticosteroids. It is used to reduce inflammation and lower the body's immune response. It also works to treat other conditions by reducing swelling and redness. Tapering doses dexamethasone may decrease steroid side effects without increasing the risk of edema in patients with brain tumors after a craniotomy.

NOT_YET_RECRUITING
ASCENT Intervention for Brain Tumor Patients
Description

The goal of this study is to test a psychosocial intervention called ASCENT (ACT-based Supportive intervention for patients with CENTral nervous system tumors). This intervention was developed to help patients after being diagnosed with a brain tumor. The main question this study aims to answer is whether this intervention is feasible (i.e., possible to carry out) and acceptable (i.e., considered helpful) to patients. Participants will be asked to take part in 6 coaching sessions and complete short surveys at four different time points. Some participants will be asked to share feedback via interviews.

RECRUITING
NeuroPathways Intervention for Brain Tumor Patients
Description

This goal of this study is to test an information and support intervention for patients with malignant (or "high-grade") brain tumors. This study was developed to help patients cope after a brain tumor diagnosis. The main question this study aims to answer is whether this intervention (which includes access to an information guide and one-on-one coaching sessions) is feasible (i.e., possible to carry out) and acceptable (i.e., considered helpful) to patients. Participants will be asked to take part in the coaching sessions, use the guide as desired, and complete a small group of short surveys at three different points in time; some participants will be asked to share feedback via exit interviews.

RECRUITING
Intra-Tumoral Injections of Natural Killer Cells for Recurrent Malignant Pediatric Brain Tumors
Description

This phase I trial tests the safety, side effects, and best dose of ex vivo expanded natural killer cells in treating patients with cancerous (malignant) tumors affecting the upper part of the brain (supratentorial) that have come back (recurrent) or that are growing, spreading, or getting worse (progressive). Natural killer (NK) cells are immune cells that recognize and get rid of abnormal cells in the body, including tumor cells and cells infected by viruses. NK cells have been shown to kill different types of cancer, including brain tumors in laboratory settings. Giving NK cells from unrelated donors who are screened for optimal cell qualities and determined to be safe and healthy may be effective in treating supratentorial malignant brain tumors in children and young adults.

RECRUITING
International Rare Brain Tumor Registry
Description

The objective of the International Rare Brain Tumor Registry (IRBTR) is to better understand rare brain tumors through the collection of biospecimens and matched clinical data of children, adolescents, and young adult patients diagnosed with rare brain tumors.

COMPLETED
Magrolimab in Children and Adults With Recurrent or Progressive Malignant Brain Tumors
Description

Children and adults with recurrent or progressive malignant brain tumors have a dismal prognosis, and outcomes remain very poor. Magrolimab is a first-in-class anticancer therapeutic agent targeting the Cluster of differentiation 47 (CD47)-signal receptor protein-alpha (SIRP-alpha) axis. Binding of magrolimab to human CD47 on target malignant cells blocks the "don't eat me" signal to macrophages and enhances tumor cell phagocytosis. Pre-clinical studies have shown that treatment with magrolimab leads to prolonged survival in models of Atypical Teratoid Rhabdoid Tumors (ATRT), diffuse intrinsic pontine glioma (DIPG), high-grade glioma (adult and pediatric), medulloblastoma, and embryonal tumors formerly called Primitive Neuro-Ectodermal Tumors (PNET). Safety studies in humans have proven that magrolimab has an excellent safety profile. Ongoing studies are currently testing magrolimab in adult myelodysplastic syndromes, acute myeloid leukemia, non-Hodgkin lymphoma, colorectal, ovarian, and bladder cancers. Herein we propose to test the safety of magrolimab in children and adults with recurrent or progressive malignant brain tumors.

ACTIVE_NOT_RECRUITING
Low Dose Versus Standard Dose Dexamethasone for Reduction of Swelling in Patients with Primary or Metastatic Brain Tumors
Description

This phase II trial studies whether low dose dexamethasone works as well as standard dose dexamethasone to reduce brain swelling after brain surgery in patients with primary brain tumors or cancer that has spread from other places in the body to the brain (metastatic). Surgery is an important part of the treatment of brain tumors; however, it results in injury to surrounding brain tissue, leading to brain swelling. Dexamethasone is effective for controlling the swelling of the brain; however, dexamethasone can cause many unwanted side effects. To minimize the side effects of dexamethasone, the lowest dose needed to control swelling of the brain should be used. This research study is assessing the safety of using a lower than standard dose of dexamethasone after the surgery to control brain swelling.

COMPLETED
Managing Distress in Malignant Brain Cancer
Description

To identify potential adaptations of the managing cancer and living meaningfully (CALM) intervention that will be required for service members, Veterans, their beneficiaries, and civilian cancer metastasis to the brain (bMET) populations.

RECRUITING
Spectroscopic MRI Guided Proton Therapy in Assessing Metabolic Change in Pediatric Patients With Brain Tumors
Description

This trial studies how well spectroscopic magnetic resonance imaging (MRI) guided proton therapy works in assessing metabolic change in pediatric patients with brain tumors. The non-invasive imaging, such as spectroscopic MRI may help to map the differences in tumor metabolism compared to healthy tissue without injection of any contrast agent.

RECRUITING
Testing if High Dose Radiation Only to the Sites of Brain Cancer Compared to Whole Brain Radiation That Avoids the Hippocampus is Better at Preventing Loss of Memory and Thinking Ability
Description

This phase III trial compares the effect of stereotactic radiosurgery to standard of care memantine and whole brain radiation therapy that avoids the hippocampus (the memory zone of the brain) for the treatment of small cell lung cancer that has spread to the brain. Stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue. Whole brain radiation therapy delivers a low dose of radiation to the entire brain including the normal brain tissue. Hippocampal avoidance during whole-brain radiation therapy (HA-WBRT) decreases the amount of radiation that is delivered to the hippocampus which is a brain structure that is important for memory. The drug, memantine, is also often given with whole brain radiotherapy because it may decrease the risk of side effects related to thinking and memory. Stereotactic radiosurgery may decrease side effects related to memory and thinking compared to standard of care HA-WBRT plus memantine.

COMPLETED
18F-FMAU PET/CT and MRI for the Detection of Brain Tumors in Patients With Brain Cancer or Brain Metastases
Description

This early phase I trial tests the use of a radioactive tracer (a drug that is visible during an imaging test) known as 18F-FMAU, for imaging with positron emission tomography/computed tomography (PET/CT) in patients with brain cancer or cancer that has spread to the brain (brain metastases). A PET/CT scan is an imaging test that uses a small amount of radioactive tracer (given through the vein) to take detailed pictures of areas inside the body where the tracer is taken up. 18F-FMAU may also help find the cancer and how far the disease has spread. Magnetic resonance imaging (MRI) is a type of imaging test used to diagnose brain tumors. 18F-FMAU PET/CT in addition to MRI may make the finding and diagnosing of brain tumor easier.

RECRUITING
A Study of a New Way to Treat Children and Young Adults With a Brain Tumor Called NGGCT
Description

This phase II trial studies the best approach to combine chemotherapy and radiation therapy (RT) based on the patient's response to induction chemotherapy in patients with non-germinomatous germ cell tumors (NGGCT) that have not spread to other parts of the brain or body (localized). This study has 2 goals: 1) optimizing radiation for patients who respond well to induction chemotherapy to diminish spinal cord relapses, 2) utilizing higher dose chemotherapy followed by conventional RT in patients who did not respond to induction chemotherapy. Chemotherapy drugs, such as carboplatin, etoposide, ifosfamide, and thiotepa, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Radiation therapy uses high energy x-rays or high-energy protons to kill tumor cells and shrink tumors. Studies have shown that patients with newly-diagnosed localized NGGCT, whose disease responds well to chemotherapy before receiving radiation therapy, are more likely to be free of the disease for a longer time than are patients for whom the chemotherapy does not efficiently eliminate or reduce the size of the tumor. The purpose of this study is to see how well the tumors respond to induction chemotherapy to decide what treatment to give next. Some patients will be given RT to the spine and a portion of the brain. Others will be given high dose chemotherapy and a stem cell transplant before RT to the whole brain and spine. Giving treatment based on the response to induction chemotherapy may lower the side effects of radiation in some patients and adjust the therapy to a more efficient one for other patients with localized NGGCT.

ACTIVE_NOT_RECRUITING
Brain Tumor-Specific Immune Cells (IL13Ralpha2-CAR T Cells) for the Treatment of Leptomeningeal Glioblastoma, Ependymoma, or Medulloblastoma
Description

This phase I trial investigates the side effects of brain tumor-specific immune cells (IL13Ralpha2-CAR T cells) in treating patients with leptomeningeal disease from glioblastoma, ependymoma, or medulloblastoma. Immune cells are part of the immune system and help the body fight infections and other diseases. Immune cells can be engineered to destroy brain tumor cells in the laboratory. IL13Ralpha2-CAR T cells is brain tumor specific and can enter and express its genes in immune cells. Giving IL13Ralpha2-CAR T cells may better recognize and destroy brain tumor cells in patients with leptomeningeal disease from glioblastoma, ependymoma or medulloblastoma.

RECRUITING
CAR T Cells After Lymphodepletion for the Treatment of IL13Rα2 Positive Recurrent or Refractory Brain Tumors in Children
Description

This phase I trial investigates the side effects of chemotherapy and cellular immunotherapy in treating children with IL13Ralpha2 positive brain tumors that have come back after a period of improvement (recurrent) or do not respond to treatment (refractory). Cellular immunotherapy (IL13(EQ)BBzeta/CD19t+ T cells) are brain-tumor specific cells that may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Chemotherapy drugs, such as as cyclophosphamide and fludarabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Many patients with brain tumor respond to treatment, but then the tumor starts to grow again. Giving chemotherapy in combination with cellular immunotherapy may kill more tumor cells and improve the outcome of treatment.

COMPLETED
Safety Study of Pritumumab in Brain Cancer
Description

Pritumumab is a human IgG1 kappa antibody that binds to a malignant tumor associated antigen, ecto domain-vimentin (EDV) which is expressed in a variety of tumor cells. Pritumumab was shown to have relatively high reactivity with brain cancer cell lines, while no reactivity was demonstrated with normal neurons, astrocytes or fetal cerebral cells. Pritumumab has notable antibody-dependent cellular cytotoxicity (ADCC), brain tumor penetration and antitumor activity in nude mouse human xenograft models. Primary Objectives - To determine the safety and/or tolerability and the recommended Phase 2 dose (RP2D) of escalating, intravenously (IV) administered Pritumumab doses in patients with recurrent gliomas or with brain metastases. Secondary Objectives * To determine pharmacokinetics and pharmacodynamics of Pritumumab * To identify preliminary signals of anti-tumor response to Pritumumab * To explore disease-related, patient-reported outcomes

COMPLETED
WP1066 in Children With Refractory and Progressive or Recurrent Malignant Brain Tumors
Description

In this Phase I clinical study, the investigators plan to offer investigational treatment with the novel JAK2/STAT3 inhibitor WP1066 (Moleculin Biotech, Inc.) to pediatric patients with any progressive or recurrent malignant brain tumor that is refractory to standard treatment and is without known cure.

COMPLETED
Psychological Intervention For Brain Tumor Caregivers
Description

This study is testing a supportive psychosocial intervention for caregivers of people who have malignant brain tumors such as gliomas or other high-grade primary brain tumors. This study was designed because caregivers of patients with malignant brain tumors often experience physical and psychological burdens caring for their loved ones. The purpose of this study is to find out whether a program offering psychological support can help caregivers learn effective coping methods during their loved one's treatment and make the experience of being a caregiver more manageable.

ACTIVE_NOT_RECRUITING
Fimepinostat in Treating Brain Tumors in Children and Young Adults
Description

This trial studies how well fimepinostat works in treating patients with newly diagnosed diffuse intrinsic pontine glioma, or medulloblastoma, or high-grade glioma that have come back. Fimepinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

RECRUITING
Pre-Operative or Post-Operative Stereotactic Radiosurgery in Treating Patients With Operative Metastatic Brain Tumors
Description

This phase III trial studies the side effects and how well stereotactic radiosurgery (SRS) works before or after surgery in patients with tumors that has spread to the brain or that can be removed by surgery. Stereotactic radiosurgery is a specialized radiation therapy that delivers a single, high dose of radiation directly to the tumor and may cause less damage to normal tissue.

RECRUITING
Feasibility of FMISO in Brain Tumors
Description

This phase II trial studies how well ¹⁸F- fluoromisonidazole (FMISO) works with positron emission tomography (PET)/magnetic resonance imaging (MRI) in assessing participants with malignant (cancerous) brain tumors. FMISO provides information about the oxygen levels in a tumor, which may affect how the tumor behaves. PET/MRI imaging produces images of the brain and how the body functions. FMISO PET/MRI may help investigators see how much oxygen is getting in the brain tumors.

ACTIVE_NOT_RECRUITING
A First in Human Study Using 89Zr-cRGDY Ultrasmall Silica Particle Tracers for Malignant Brain Tumors
Description

The purpose of this study is to test if PET scans using 89Zr-DFO-cRGDY-PEG-Cy5-C' dot particles, can be used to take pictures of brain tumors. The investigators want to understand how the particles are distributed and removed from the body, which may help others be treated in the future. This will be the first time that 89Zr-DFO-cRGDY-PEG-Cy5-C' dot particles are being used in people. The amount of particles given in this study is very small compared to the amount that was used in mice animal studies.

COMPLETED
SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet Therapies for Children and Young Adults With Recurrent Brain Tumors
Description

Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.

Conditions
Anaplastic AstrocytomaAnaplastic EpendymomaAnaplastic GangliogliomaAnaplastic MeningiomaAnaplastic OligodendrogliomaPleomorphic Xanthoastrocytoma, AnaplasticAtypical Teratoid/Rhabdoid TumorBrain CancerBrain TumorCentral Nervous System NeoplasmsChoroid Plexus CarcinomaCNS Embryonal Tumor With Rhabdoid FeaturesGanglioneuroblastoma of Central Nervous SystemCNS TumorEmbryonal Tumor of CNSEpendymomaGlioblastomaGliomaGlioma, MalignantMedulloblastomaMedulloblastoma; Unspecified SiteMedulloepitheliomaNeuroepithelial TumorNeoplasmsNeoplasms, NeuroepithelialPapillary Tumor of the Pineal Region (High-grade Only)Pediatric Brain TumorPineal Parenchymal Tumor of Intermediate Differentiation (High-grade Only)PineoblastomaPrimitive Neuroectodermal TumorRecurrent MedulloblastomaRefractory Brain TumorNeuroblastoma. CNSGlioblastoma, IDH-mutantGlioblastoma, IDH-wildtypeMedulloblastoma, Group 3Medulloblastoma, Group 4Glioma, High GradeNeuroepithelial Tumor, High GradeMedulloblastoma, SHH-activated and TP53 MutantMedulloblastoma, SHH-activated and TP53 WildtypeMedulloblastoma, Chromosome 9q LossMedulloblastoma, Non-WNT Non-SHH, NOSMedulloblastoma, Non-WNT/Non-SHHMedulloblastoma, PTCH1 MutationMedulloblastoma, WNT-activatedEpendymoma, RecurrentGlioma, Recurrent High GradeGlioma, Recurrent MalignantEmbryonal Tumor, NOSGlioma, Diffuse Midline, H3K27M-mutantEmbryonal Tumor With Multilayered Rosettes (ETMR)Ependymoma, NOS, WHO Grade IIIEpendymoma, NOS, WHO Grade IIMedulloblastoma, G3/G4Ependymoma, RELA Fusion Positive