183 Clinical Trials for Various Conditions
This study is being done to identify patient and caregiver burdens regarding their experience with diagnosis and treatment of CNS tumors. These results will help doctors find areas where patients and caregivers may need more support.
This study explores how microorganisms in the gut can affect the growth and progression of brain tumors.
This phase I trial studies the impact of taking drugs (agents) that target altered brain metabolism following standard of care brain radiotherapy. Radiotherapy uses high energy x-rays, particles, or radioactive seeds to kill cancer cells and shrink tumors. However, radiotherapy can also cause harmful effects to normal brain functioning. One drug, called anhydrous enol-oxaloacetate (AEO), has previously been studied in ischemic stroke, Alzheimer's disease, Parkinson's disease, and glioma. Drugs such as AEO may help preserve or restore healthy brain function after brain radiotherapy compared to the standard practice which consists of no drugs.
This trial gathers information from patients with primary central nervous system or base of skull tumors that receive proton beam therapy and see if certain imaging techniques can help detect radiation-related changes over time. This study may help providers learn more about proton beam radiotherapy and how to improve the way it is delivered.
This trial studies the feasibility of using intensity modulated proton therapy to deliver craniospinal irradiation while avoiding the bones of the vertebral column. Intensity modulated proton therapy is an advanced radiation therapy modality that uses high energy protons to kill cancer cells and shrink tumors, and may reduce the side effects of treatment by reducing radiation exposure to the spinal column.
This early phase I trial studies the feasibility of giving memantine for the reduction of cognitive impairment after radiation therapy in pediatric patients with central nervous system tumors. Memantine may reduce the effects of radiation therapy on memory and thinking.
This early phase I trial studies how well hyperpolarized carbon C 13 pyruvate magnetic resonance imaging works in detecting lactate and bicarbonate in participants with central nervous system tumors. Hyperpolarized carbon C 13 pyruvate magnetic resonance imaging may be used to measure the metabolic state of malignant brain tumors.
This is a Phase 1 study of central nervous system (CNS) locoregional adoptive therapy with SC-CAR4BRAIN, an autologous CD4+ and CD8+ T cells lentivirally transduced to express to express combinations of B7-H3, EGFR806, HER2, and IL13-zetakine chimeric antigen receptors (CAR). CAR T cells are delivered via an indwelling catheter into the ventricular system in children and young adults with diffuse intrinsic pontine glioma (DIPG), diffuse midline glioma (DMG), and recurrent or refractory CNS tumors. A child or young adult meeting all eligibility criteria, including having a CNS catheter placed into their ventricular system, and meeting none of the exclusion criteria will have their T cells collected. The T cells will then be bioengineered into a second-generation CAR T cell that target B7H3, EGFR806, HER2, and IL13-zetakine on tumor cells. Patients will be assigned to 1 of 2 treatment Arms based on the type of their tumor: * Arm A is for patients with DIPG (meaning primary disease localized to the pons, metastatic disease is allowed) anytime after standard radiation OR after progression. * Arm B is for patients with non-pontine DMG (meaning DMG in other parts of the brain such as the thalamus or spine) anytime after standard radiation OR after progression. This Arm also includes other recurrent/refractory CNS tumors.
This phase I/II trial evaluates the best dose, side effects and possible benefit of CBL0137 in treating patients with solid tumors, including central nervous system (CNS) tumors or lymphoma that has come back (relapsed) or does not respond to treatment (refractory). Drugs, such as CBL0137, block signals passed from one molecule to another inside a cell. Blocking these signals can affect many functions of the cell, including cell division and cell death, and may kill cancer cells.
This phase II trial studies the effect of avapritinib in treating malignant solid tumors that have a genetic change (mutation) in CKIT or PDGFRA and have spread to nearby tissue or lymph nodes (locally advanced) or other places in the body (metastatic). Avapritinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Avapritinib may help to control the growth of malignant solid tumors.
This phase I trial studies the effects and best dose of ONC206 alone or in combination with radiation therapy in treating patients with diffuse midline gliomas that is newly diagnosed or has come back (recurrent) or other recurrent primary malignant CNS tumors. ONC206 is a recently discovered compound that may stop cancer cells from growing. This drug has been shown in laboratory experiments to kill brain tumor cells by causing a so called "stress response" in tumor cells. This stress response causes cancer cells to die, but without affecting normal cells. ONC206 alone or in combination with radiation therapy may be effective in treating newly diagnosed or recurrent diffuse midline gliomas and other recurrent primary malignant CNS tumors.
This phase I trial collects blood samples to investigate the prevalence of changes in genes (genetic mutations) in solid tumor patient populations seeking care at Mayo Clinic Embedded Cancer Center at St. Vincent's Riverside. This may help doctors better understand and/or treat others who have genetic mutations.
This phase II Pediatric MATCH trial studies how well ulixertinib works in treating patients with solid tumors that have spread to other places in the body (advanced), non-Hodgkin lymphoma, or histiocytic disorders that have a genetic alteration (mutation) in a signaling pathway called MAPK. A signaling pathway consists of a group of molecules in a cell that control one or more cell functions. Genes in the MAPK pathway are frequently mutated in many types of cancers. Ulixertinib may stop the growth of cancer cells that have mutations in the MAPK pathway.
This phase II trial studies how well cabozantinib-s-malate works in treating younger patients with sarcomas, Wilms tumor, or other rare tumors that have come back, do not respond to therapy, or are newly diagnosed. Cabozantinib-s-malate may stop the growth of tumor cells by blocking some of the enzymes needed for tumor growth and tumor blood vessel growth.
This study collects information on the side effects of proton therapy and detailed information on the proton therapy treatment plan itself. This may help researchers develop methods to predict the risk of side effects for future patients and learn the long-term benefit of proton therapy.
The purpose of this study is to evaluate the sensitivity and specificity of "A-PROTEIN" levels in patients with brain tumors. A-PROTEIN levels will be analyzed both pre and post treatment. Levels in blood and/or cerebrospinal fluid (CSF) will be analyzed and correlated with the underlying diagnosis and outcome.
The PIRATE study tests the experimental drug RRx-001 in combination with 2 chemotherapy drugs that are commonly used in patients with cancer. RRx-001 has been used alone and with other anti-cancer medicines in adults. However, the investigators do not know what effects it will have in children and young adults.
This study is a clinical trial to determine the safety of inoculating G207 (an experimental virus therapy) into a recurrent or refractory cerebellar brain tumor. The safety of combining G207 with a single low dose of radiation, designed to enhance virus replication, tumor cell killing, and an anti-tumor immune response, will also be tested. Funding Source- FDA OOPD
This trial investigates how well 7T MRI scan works in imaging central nervous system tumors. Diagnostic procedures, such as 7T MRI, may help find and diagnose central nervous system tumors and help measure a patient's response to earlier treatment. The goal of this trial is to learn if a new MRI system can provide better quality images than a standard MRI.
This clinical trial evaluates the use of microdialysis catheters during surgery to collect biomarkers, and studies the feasibility of intraoperative microdialysis during neurosurgery for central nervous system malignancies. A biomarker is a measurable indicator of the severity or presence of disease state. Information collected in this study may help doctors to develop new strategies to better diagnose, monitor, and treat brain tumors.
This pilot will study the feasibility and exploratory efficacy of using Cabozantinib for recurrent or refractory central nervous system tumors for which there are no curative options. Patients will also be followed for safety, time to progression, event free survival and overall survival
Primary Objectives: Phase 1 Part: To determine the dose limiting toxicity (DLT) and the maximum tolerated dose (MTD) of cabazitaxel as a single agent in pediatric participants with recurrent or refractory solid tumors including tumors of the central nervous system. Phase 2 Part: To determine the objective response rate (complete and partial response) and the duration of response to cabazitaxel as a single agent in participants with recurrent or refractory high grade glioma (HGG) or diffuse intrinsic pontine glioma (DIPG). Secondary Objectives: Phase 1 Part: To characterize the safety and tolerability of cabazitaxel in participants with recurrent or refractory solid tumors including tumors of the central nervous system. To characterize the pharmacokinetic (PK) profile of cabazitaxel in participants with recurrent or refractory solid tumors including tumors of the central nervous system. To evaluate preliminary anti-tumor activity that may be associated with cabazitaxel in participants with recurrent or refractory solid tumors including tumors of the central nervous system. Phase 2 Part: To characterize the safety and tolerability of cabazitaxel in participants with recurrent or refractory HGG or DIPG. To estimate progression free survival in participants with recurrent or refractory HGG or DIPG. To estimate overall survival in participants with recurrent or refractory HGG or DIPG. To characterize the plasma PK profile of cabazitaxel in participants with recurrent or refractory HGG or DIPG.
The purpose of this study is to determine the safety, tolerability, and pharmacokinetics (PK) of 2B3-101 both as single agent and in combination with trastuzumab. Furthermore, the study will explore the preliminary antitumor activity of 2B3-101 as single agent in patients with with solid tumors and brain metastases or recurrent malignant glioma as well as in patients with various forms of breast cancer with and in combination with trastuzumab in HER2+ breast cancer patients with brain metastases.
RATIONALE: PTC299 may stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I trial is studying the side effects and the best dose of PTC299 in treating young patients with recurrent or refractory primary central nervous system tumors.
This phase I trial is studying the side effects and best dose of vorinostat when given together with bortezomib in treating young patients with refractory or recurrent solid tumors, including CNS tumors and lymphoma. Vorinostat and bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
Bortezomib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving bortezomib before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving bortezomib together with temozolomide after surgery may kill any tumor cells that remain after surgery. This phase II trial is studying how well giving bortezomib before surgery followed by giving bortezomib together with temozolomide after surgery works in treating patients with recurrent malignant glioma.
RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.
RATIONALE: Imaging procedures that use aminolevulinic acid (ALA) may help find and diagnose residual tumor in participants with grade IV malignant astrocytoma who are undergoing surgery to remove the tumor. PURPOSE: Our primary long-term goal is to improve the completeness of surgical resection of malignant brain tumor through image- guided fluorescence localization. We hypothesize that the use of qualitative fluorescence imaging and point PpIX concentration quantification will enable more complete tumor resection than normal direct (i.e., white light) visualization, and thereby improve participant survival.
RATIONALE: Vaccines made from peptides and a person's dendritic cells may help the body build an effective immune response to kill tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of vaccine therapy in treating patients with malignant glioma.
RATIONALE: Drugs used in chemotherapy, such as temozolomide and VNP40101M, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Temozolomide may also stop the growth of tumor cells by blocking blood flow to the tumor. PURPOSE: This phase I/II trial is studying the side effects and best dose of VNP40101M when given together with temozolomide and to see how well it works in treating patients with progressive or relapsed malignant glioma.