63 Clinical Trials for Various Conditions
The purpose of this study is to determine whether doxycycline is effective in the treatment of relapsed Non Hodgkin Lymphomas (NHL).
This phase II trial studies the effects of venetoclax and rituximab in comparison to ibrutinib and rituximab in treating patients with previously untreated Waldenstrom's macroglobulinemia/lymphoplasmacytic lymphoma. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Rituximab is a monoclonal antibody. It binds to a protein called CD20, which is found on B cells (a type of white blood cell) and some types of cancer cells. This may help the immune system kill cancer cells. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking Bcl-2, a protein needed for cancer cell survival. Giving venetoclax and rituximab may work better in treating patients with previously untreated Waldenstrom's macroglobulinemia than ibrutinib and rituximab alone.
This phase I trial studies the side effects and best dose of vaccine therapy in treating patients with lymphoplasmacytic lymphoma. Vaccines made from a person's cancer cells may help the body build an effective immune response to kill cancer cells.
Background The development of new technologies now allow scientists to investigate the molecular basis and clinical manifestations of monoclonal B cell lymphocytosis (MBL), chronic lymphocytic leukemia(CLL)/small lymphocytic lymphoma (SLL), lymphoplasmacytic lymphoma (LPL)/Waldenstrom macroglobulinemia (WM), and splenic marginal zone lymphoma (SMZL). Applying these methods in a natural history study can help identify processes involved in disease progression, and possibly lead to the discovery or validation of treatment targets. Objectives Study the history of MBL/CLL/SLL/LPL/WM/SMZL in patients prior to and after treatment. Characterize clinical, biologic and molecular events of disease stability and progression of patients enrolled on this protocol. Eligibility: * Diagnosis of CLL/SLL and on treatment/previously treated/nearing treatment * Diagnosis of LPL/WM * As of February 5, 2025, patients with MBL and SMZL will no longer be enrolled. * Age greater than or equal to 18 years. * ECOG performance status of 0-2. Design Patients are typically followed every 6 to 24 months in the clinic and have blood drawn. Patients may be asked to undergo additional testing, including bone marrow biopsy and aspiration, lymph node biopsy, positron emission tomography, and CT and MRI scans. Some of these tests (e.g., blood draw) may be required to monitor CLL/SLL and LPL/WM. Other tests (e.g., lymph node biopsy) may not be clinically indicated, but patients may be asked to undergo these procedures for research purposes. No treatment will be administered on this study. If a patients requires treatment for their cancer, available NIH clinical trials and alternative treatment options will be discussed with the patient.
The purpose of this study is to determine the safety and effects (good or bad) of Campath-1H antibody in the treatment of lymphoplasmacytic lymphoma.
This phase I trial tests the safety, side effects, and best dose of Q702 in treating patients with hematologic malignancies. Q702 is in a class of medications called immunomodulatory agents. It works by helping the immune system kill cancer cells and by helping the bone marrow to produce normal blood cells. Giving Q702 may be safe, tolerable and/or effective in treating patients with hematologic malignancies.
This study is being done to examine the safety and effectiveness of pacritinib as a possible treatment for participants with Waldenström macroglobulinemia (WM). The name of the study drug involved in this study is: -Pacritinib (a type of kinase inhibitor)
This phase of the protocol (protocol part B), seeks to evaluate the new formulation in healthy normal volunteers to confirm the new formulation provides comparable human dosimetry to which was seen and published in protocol part A. Additionally, the new formulation will be studied utilizing an expanded patient population to include patients with confirmed diagnosis of multiple myeloma (MM), low-grade lymphoma, or MM and lymphoma patients who are status post bone marrow transplant (BMT) with negative imaging and suspected recurrence.
The purpose of this study is to evaluate safety and tolerability and to determine the maximum tolerated dose (MTD) or maximum administered dose (MAD) and/or recommended dose (RD) of SGR-1505.
This trial aims to demonstrate the feasibility of this approach to reliably generate product and to safely administer the product to patients who have B-Cell Lymphoma and B-Acute Lymphoblastic Leukemia.
An open label single-arm clinical trial to evaluate the safety, tolerability, PK, PD, and preliminary efficacy of HMPL-760 in patients with previously treated CLL/SLL or NHL
This phase II trial studies the effect of acalabrutinib and obinutuzumab in treating patients with follicular lymphoma or other indolent non-Hodgkin lymphoma for which the patient has not received treatment in the past (previously untreated). Acalabrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Immunotherapy with obinutuzumab may induce changes in body's immune system and may interfere with the ability of cancer cells to grow and spread. Giving acalabrutinib and obinutuzumab may kill more cancer cells.
This phase II/III trial compares the side effects and activity of oral azacitidine in combination with the standard drug therapy (reduced dose rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone \[R-miniCHOP\]) versus R-miniCHOP alone in treating patients 75 years or older with newly diagnosed diffuse large B cell lymphoma. R-miniCHOP includes a monoclonal antibody (a type of protein), called rituximab, which attaches to the lymphoma cells and may help the immune system kill these cells. R-miniCHOP also includes prednisone which is an anti-inflammatory medication and a combination of 3 chemotherapy drugs, cyclophosphamide, doxorubicin, and vincristine. These 3 chemotherapy drugs, as well as oral azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Combining oral azacitidine with R-miniCHOP may shrink the cancer or extend the time without disease symptoms coming back or extend patient's survival when compared to R-miniCHOP alone.
This phase I/Ib trial investigates the side effects of CC-486 and how well it works in combination with lenalidomide and obinutuzumab in treating patients with CD20 positive B-cell lymphoma that has come back (recurrent) or has not responded to treatment (refractory). Chemotherapy drugs, such as CC-486, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Lenalidomide is a drug that alters the immune system and may also interfere with the development of tiny blood vessels that help support tumor growth. Therefore, in theory, it may reduce or prevent the growth of cancer cells. Obinutuzumab is a type of antibody therapy that targets and attaches to the CD20 proteins found on follicular lymphoma cells as well as some healthy blood cells. Once attached to the CD20 protein the obinutuzumab is thought to work in different ways, including by helping the immune system destroy the cancer cells and by destroying the cancer cells directly. Giving CC-486 with lenalidomide and obinutuzumab may improve response rates, quality, and duration, and minimize adverse events in patients with B-cell lymphoma.
This study will assess safety and feasibility of infusing genetically modified autologous T cells transduced to express a chimeric antigen receptor targeting the B cell surface antigen Cluster of Differentiation 19 (CD19)
This phase II trial studies how well a donor stem cell transplant, treosulfan, fludarabine, and total-body irradiation work in treating patients with blood cancers (hematological malignancies). Giving chemotherapy and total-body irradiation before a donor stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient, they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells.
This is a single arm, phase II trial of HLA-haploidentical related hematopoietic cells transplant (Haplo-HCT) using reduced intensity conditioning (fludarabine and melphalan and total body irradiation). Peripheral blood is the donor graft source. This study is designed to estimate disease-free survival (DFS) at 18 months post-transplant.
This phase I trial studies the best dose and how well copanlisib when given together with nivolumab works in treating patients with Richter's transformation or transformed indolent non-Hodgkin lymphoma. Copanlisib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving copanlisib and nivolumab may work better in treating patients with Richter's transformation or transformed non-Hodgkin lymphoma.
This is an single arm, open label, interventional phase II trial evaluating the efficacy of umbilical cord blood (UCB) hematopoietic stem and progenitor cells (HSPC) expanded in culture with stimulatory cytokines (SCF, Flt-3L, IL-6 and thromopoietin) on lympho-hematopoietic recovery. Patients will receive a uniform myeloablative conditioning and post-transplant immunoprophylaxis.
This trial will determine the safety and tolerability of Pacritinib in patients with relapsed/refractory lymphoproliferative disorders.
This phase I trial studies the side effects and best dose of pevonedistat when given together with ibrutinib in participants with chronic lymphocytic leukemia or non-Hodgkin lymphoma that has come back or has stopped responding to other treatments. Pevonedistat and ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
This is a study to determine the maximum tolerated dose (MTD) for CDX-1140 (CD40 antibody), either alone or in combination with CDX-301 (FLT3L), pembrolizumab, or chemotherapy and to further evaluate its tolerability and efficacy in expansion cohorts once the MTD is determined.
This is a Phase II study of allogeneic hematopoietic stem cell transplant (HCT) using a myeloablative preparative regimen (of either total body irradiation (TBI); or, fludarabine/busulfan for patients unable to receive further radiation). followed by a post-transplant graft-versus-host disease (GVHD) prophylaxis regimen of post-transplant cyclophosphamide (PTCy), tacrolimus (Tac), and mycophenolate mofetil (MMF).
This is a pilot study to learn how safe and how effective the study drug Zydelig works, after autologous stem cell transplant as a maintenance therapy in patients with indolent or transformed indolent B-cell non-Hodgkins lymphoma (iNHL or tiNHL).
This is a phase I trial with pilot expansion of HLA-haploidentical or HLA-mismatched related donor nicotinamide expanded-natural killer (NAM-NK) cell based therapy for patients with relapsed or refractory multiple myeloma (MM) or relapsed/refractory CD20-positive non-Hodgkin lymphoma (NHL). The primary endpoint of the study is to determine the maximum tolerated dose (MTD) of NAM-NK cells while maintaining safety.
This I/II trial studies the side effects and best dose of lenalidomide when given together with nivolumab and to see how well they work in treating patients with non-Hodgkin or Hodgkin lymphoma that has come back and does not respond to treatment. Monoclonal antibodies, such as nivolumab, may interfere with the ability of tumor cells to grow and spread. Drugs used in chemotherapy, such as lenalidomide, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nivolumab and lenalidomide may work better in treating patients with non-Hodgkin or Hodgkin lymphoma.
This phase I/II trial studies the side effect and best dose of entospletinib when giving together with obinutuzumab and to see how well they work in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma that has come back. Entospletinib may stop the growth of cancer cells by blocking some of the enzymes need for cell growth. Monoclonal antibodies, such as obinutuzumab, may interfere with the ability of cancer cells to grow and spread. Giving entospletinib and obinutuzumab together may work better in treating patients with chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin lymphoma.
This is a single center pilot study of a non-myeloablative umbilical cord blood transplant for the treatment of a hematological malignancy with a single infusion of T regulatory (Treg) given shortly after UCB transplantation.
Part A of this study evaluates iopofosine I 131 (CLR 131) in patients with select B-cell malignancies (multiple myeloma( MM), indolent chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL), lymphoplasmacytic lymphoma (LPL)/Waldenstrom Macroglobulinemia (WM), marginal zone lymphoma (MZL), mantle cell lymphoma (MCL), diffuse large B-cell lymphoma (DLBCL), and central nervous system lymphoma (CNSL) who have been previously treated with standard therapy for their underlying malignancy. Part B (CLOVER-WaM) is a pivotal efficacy study evaluating IV administration of iopofosine I 131 in patients with WM that have received at least two prior lines of therapy.
This phase I/Ib trial studies the side effects and best dose of ibrutinib when given together with pembrolizumab and to see how well they work in treating patients with non-Hodgkin lymphoma that has come back or does not respond to treatment. Monoclonal antibodies, such as pembrolizumab, may interfere with the ability of cancer cells to grow and spread. Ibrutinib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Given pembrolizumab and ibrutinib may work better in treating patients with non-Hodgkin lymphoma.