32 Clinical Trials for Various Conditions
Anaphylaxis is a serious allergic reaction that develops rapidly and can cause death. Some patients experience anaphylaxis is association with exercise, a disorder called exercise-induced anaphylaxis. A subset of patients with unexplained anaphylaxis, especially those with hypotension during the anaphylactic episodes, have been shown to have abnormal, clonal populations of a certain cell type, mast cells, in the bone marrow. This has been described in at least one patient with exercise-induced anaphylaxis. The investigators would like review the findings in a group of patients with exercise-induced anaphylaxis who have undergone evaluation for the presence of abnormal, clonal mast cells.
Background: Allergic reactions have been reported to occur after vaccination with both the Pfizer-BioNTech COVID-19 Vaccine and Moderna COVID-19 Vaccine. Allergic reactions range from mild to severe and include life- threatening anaphylactic reactions, although no deaths have been reported with either vaccine. This study is designed with two principal aims: * To estimate the proportions of systemic allergic reactions to the Pfizer-BioNTech COVID-19 Vaccine and the Moderna COVID-19 Vaccine in a High-Allergy/Mast Cell Disorder (HA/MCD) population, and * If the risk in the HA/MCD is demonstrable, to determine whether the proportions are higher in the HA/MCD in comparison to a representative population without severe allergies or mast cell disorders
This is a Phase 1, open-label, dose-escalation study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD) and antineoplastic activity of avapritinib (also known as BLU-285), administered orally (PO), in adult patients with advanced systemic mastocytosis and other relapsed or refractory myeloid malignancies. The study consists of 2 parts:, dose-escalation (Part 1) and expansion (Part 2).
This is a Phase 1, open-label, first-in-human (FIH) dose-escalation study designed to evaluate the safety, tolerability, pharmacokinetics (PK), pharmacodynamics (PD), and preliminary antitumor activity of DCC-2618, administered orally (PO), in adult patients with advanced malignancies. The study consists of 2 parts, a dose-escalation phase, and an expansion phase. All active patients (from both dose-escalation and expansion phases) will then transition into an extension phase.
Mastocytosis is a disorder characterized by presence of excessive numbers of mast cells in skin, bone marrow and internal organs. It can affect both children and adults, males and females and individuals from all ethnic backgrounds, although precise demographic information about the affected populations is not available as it is a rare disorder. Mastocytosis in children is generally limited to the skin and follows a self limited course, while it is a disorder of the hematopoietic stem cell associated with somatic mutations of the c-kit gene in most patients with adult-onset of disease. There is no known curative therapy for most patients with systemic mastocytosis. Recent research studies identified several subtypes of disease with distinct clinical and pathologic features, however, a precise understanding of the incidence as well as molecular pathology of different disease subtypes is lacking. This study aims to examine molecular and cellular pathological aspects of disease in patients with mastocytosis and correlate findings with clinical presentation and prognosis. Patients will undergo a routine history and physical examination, and diagnostic tests will be ordered as dictated by each patient's clinical presentation. Blood and bone marrow will be obtained for diagnostic and research purposes. Genetic analysis of the c-kit gene regulating mast cell growth and differentiation will be performed. It is hoped that findings obtained from this study will help to design novel therapies for mastocytosis and other disorders in which mast cells play a critical role.
This study will determine if FSD201 reduces the average daily 24-hour recall pain intensity after 28 and 56 days of treatment in adults with chronic widespread musculoskeletal nociplastic pain.
The purpose of this study is to explore the key symptoms of individuals with systemic mastocytosis. Interviews of enrolled individuals will be conducted to learn about the disease symptoms and condition. The interview will last approximately 60 minutes and will be conducted by a trained interviewer, be audio-recorded (with patient consent), and all information provided by the patient will be treated confidentially and made anonymous so that it is non-identifiable. The interview may be conducted face-to-face, over the phone, or virtually via Skype, a free video conferencing program, depending upon the patient's geographic location. Patients will be compensated for their participating time. This is not a medication-related study, and no medication will be distributed or tested during this study. Participation in this study will not affect any treatment or assistance that a patient currently receives or may receive in the future.
The safety and efficacy of midostaurin (PKC412), a novel investigational drug, will be evaluated on the basis of response rate, when administered to patients with aggressive systemic mastocytosis (ASM) or mast cell leukemia (MCL)
The Mast Cell Connect Registry is a voluntary, observational database that will capture demographic, socioeconomic, and disease information directly from patients with mastocytosis via a secure web-based tool. No experimental intervention is involved.
This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.
RATIONALE: Collecting and storing samples of blood and bone marrow from patients with cancer to study in the laboratory may help doctors learn more about diagnosing cancer and determine a patient's eligibility for a treatment clinical trial. It may also help the study of cancer in the future. PURPOSE: This laboratory study is collecting tissue samples from patients with leukemia or other blood disorders who are planning to enroll in an ECOG leukemia treatment clinical trial.
RATIONALE: Listening to relaxing music during a bone marrow biopsy may be effective in reducing anxiety and pain. PURPOSE: This randomized clinical trial is studying how well music works in reducing anxiety and pain in adult patients undergoing bone marrow biopsy for hematologic cancers or other diseases.
RATIONALE: Gathering information about older patients with cancer may help the study of cancer in the future. PURPOSE: This research study is gathering information from older patients with cancer into a registry.
RATIONALE: Collecting and storing samples of tissue, blood, and body fluid from patients with cancer to study in the laboratory may help the study of cancer in the future. PURPOSE: This research study is collecting and storing blood and tissue samples from patients being evaluated for hematologic cancer.
RATIONALE: Gathering information about how often methemoglobinemia occurs in young patients receiving dapsone for hematologic cancer or aplastic anemia may help doctors learn more about the disease and plan the best treatment. PURPOSE: This research study is looking at methemoglobinemia in young patients with hematologic cancer or aplastic anemia treated with dapsone.
RATIONALE: Collecting information about the effect of hematologic cancer and its treatment on quality of life may help doctors learn more about the disease and plan the best treatment. PURPOSE: This phase I trial is studying quality of life in younger leukemia and lymphoma survivors.
This clinical trial studies fludarabine phosphate and total-body radiation followed by donor peripheral blood stem cell transplant and immunosuppression in treating patients with hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving total-body irradiation together with fludarabine phosphate, cyclosporine, and mycophenolate mofetil before transplant may stop this from happening.
This is an open-label, two-part Phase 2 study investigating CGT9486 for the treatment of patients with Advanced Systemic Mastocytosis (AdvSM), including patients with Aggressive SM (ASM), SM with Associated Hematologic Neoplasm (SM-AHN), and Mast Cell Leukemia (MCL).
This phase I trial is studying the side effects, best way to give, and best dose of Akt inhibitor MK2206 (MK2206) in treating patients with recurrent or refractory solid tumors or leukemia. MK2206 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.
RATIONALE: Infection prophylaxis and management may help prevent cytomegalovirus (CMV) infection caused by a stem cell transplant. PURPOSE:This clinical trial studies infection prophylaxis and management in treating cytomegalovirus infection in patients with hematologic malignancies previously treated with donor stem cell transplant.
This clinical trial studies massage therapy given by caregiver in treating quality of life of young patients undergoing treatment for cancer. Massage therapy given by a caregiver may improve the quality of life of young patients undergoing treatment for cancer
RATIONALE: The influenza vaccine may help prevent flu in patients who have undergone stem cell transplant. PURPOSE: This clinical trial is studying how well the influenza vaccine works in preventing flu in patients who have undergone stem cell transplant and in healthy volunteers.
RATIONALE: Diagnostic procedures, such as 3'-deoxy-3'-\[18F\] fluorothymidine (FLT) PET imaging, may help find and diagnose cancer. It may also help doctors predict a patient's response to treatment and help plan the best treatment. PURPOSE: This phase I trial is studying FLT PET imaging in patients with cancer.
RATIONALE: Studying blood samples from cancer patients undergoing pain treatment in the laboratory may help doctors learn more about how pain drugs work in the body. It may also help doctors predict how patients will respond to treatment. PURPOSE: This research study is looking at fentanyl in patients with cancer.
This phase I trial studies the side effects and the best dose of sunitinib malate in treating human immunodeficiency virus (HIV)-positive patients with cancer receiving antiretroviral therapy. Sunitinib malate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.
RATIONALE: Methadone, morphine, or oxycodone may help relieve pain caused by cancer. It is not yet known whether methadone is more effective than morphine or oxycodone in treating pain in patients with cancer. PURPOSE: This randomized clinical trial is studying methadone to see how well it works compared with morphine or oxycodone in treating pain in patients with cancer.
RATIONALE: An Opioid Titration Order Sheet that allows healthcare providers to adjust the dose and schedule of pain medication may help improve pain treatment for patients with cancer. It is not yet known whether the use of an Opioid Titration Order Sheet is more effective than standard care in treating pain caused by cancer. PURPOSE: This randomized phase III trial is studying an Opioid Titration Order Sheet to see how well it works compared with standard care in treating patients with cancer pain.
RATIONALE: Pemetrexed disodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Studying samples of cerebrospinal fluid and blood from patients with cancer in the laboratory may help doctors learn how pemetrexed disodium works in the body and identify biomarkers related to cancer. PURPOSE: This clinical trial is studying the side effects and how well pemetrexed disodium works in treating patients with leptomeningeal metastases.
This clinical trial studies fludarabine phosphate, low-dose total-body irradiation, and donor stem cell transplant followed by cyclosporine, mycophenolate mofetil, and donor lymphocyte infusion in treating patients with hematopoietic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total body irradiation (TBI) before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also keep the patient's immune response from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Giving an infusion of the donor's T cells (donor lymphocyte infusion) after the transplant may help increase this effect. Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.
This study will investigate the safety and effectiveness of an experimental stem cell transplant procedure for treating mastocytosis-a disease of abnormal mast cell growth. Patients often feel faint, have skin problems, joint and bone pain, low blood counts and enlarged liver, spleen or lymph nodes. As yet, there is no cure for mastocytosis, and treatment is aimed at controlling symptoms. Stem cells are cells produced by the bone marrow that mature into the different blood components-white cells, red cells and platelets. Transplantation of allogeneic (donated) stem cells is a mainstay of therapy for some forms of leukemia. Patients first receive intensive chemotherapy and radiation to rid the body of cancer cells. This "conditioning" is followed by transplantation of donated stem cells to generate new, healthy bone marrow. In addition to producing the new bone marrow, the donated cells also fight any residual tumor cells that might have remained in the body. This is called a "graft-versus-tumor" effect. This study will examine whether a stem cell transplant from a healthy donor can similarly target and destroy mast cells in a "graft-versus-mast cell" effect. Also, to try to reduce the harmful side effects of chemotherapy and radiation, this study will use lower dose chemotherapy and no radiation. Patients with advanced mastocytosis between 10 and 80 years old may be eligible for this study. They will be tested for HLA type matching with a sibling and will undergo a medical history, physical examination and several tests to determine eligibility for the study. Participants will undergo apheresis to collect lymphocytes (a type of white blood cell) for immune function tests. In this procedure, blood is drawn through a needle in the arm, similar to donating a unit of blood. The lymphocytes are then separated and collected by a cell separator machine, and the rest of the blood is returned through a needle in the other arm. Patients will also have a central venous line (flexible plastic tube) placed in their upper chest leading to a vein. This line will remain in place throughout the transplant and recovery period and will be used to transfuse blood components, administer medicines, infuse the donated stem cells, and draw blood for tests. Patients will begin conditioning with cyclophosphamide, starting 7 days before the transplant, and fludarabine, starting 5 days before the transplant, to prevent rejection of the donated cells. From 1 to 3 days after the chemotherapy is completed, the stem cells will be transfused through the central venous line. Also, from 4 days before the transplantation until about 3 months after the procedure, patients will receive cyclosporine and mycophenolate mofetil-drugs that help prevent both rejection of the donated cells and attack by the donor cells on the patient's cells (called graft-versus-host disease). Patients will stay in the hospital about 20 to 30 days after the transplant. After discharge, they will continue to take antibiotics, cyclosporine and mycophenolate mofetil at home. If the mastocytosis progresses, cyclosporine and mycophenolate mofetil will be tapered over 4 weeks. If the mastocytosis persists, patients may receive additional transfusions of donor lymphocytes to help kill the mast cells. Patients' progress will be followed weekly or twice weekly for 3 months, then at 6, 12, 18, 24, 30, 36, 48 and 60 months after transplant, and then twice a year for various tests, treatments and examinations.