Treatment Trials

23 Clinical Trials for Various Conditions

Focus your search

COMPLETED
Interleukin-15 (IL-5) in Combination With Avelumab (Bavencio) in Relapsed/Refractory Mature T-cell Malignancies
Description

Background: Some T-cell lymphomas and leukemias do not respond to standard treatment. Researchers hope to develop a treatment that works better than current treatments. Objective: To test if interleukin (IL-5) combined with avelumab is safe and effective for treating certain cancers. Eligibility: People ages 18 and older with relapsed T-cell leukemias and lymphomas for which no standard treatment exists or standard treatment has failed Design: Participants will be screened with: * Medical history * Physical exam * Blood, urine, heart, and lung tests * Possible tumor biopsy * Bone marrow biopsy: A small needle will be inserted into the hipbone to take out a small amount of marrow. * Computed tomography (CT) or positron emission tomography (PET) scans and magnetic resonance imaging (MRI): Participants will lie in a machine that takes pictures of the body. Participants will get the study drugs for 6 cycles of 28 days each. They will have a midline catheter inserted: A tube will be inserted into a vein in the upper chest. They will get Interleukin-15 (IL-5) as a constant infusion over the first 5 days of every cycle. They will get avelumab on days 8 and 22 of each cycle. They will be hospitalized for the first week of the first cycle. Participants will have tests throughout the study: * Blood and urine tests * Another tumor biopsy if their disease gets worse * Scans every 8 weeks * Possible repeat MRI * Another bone marrow biopsy at the end of treatment, if there was lymphoma in the bone marrow before treatment, and they responded to treatment everywhere else. After they finish treatment, participants will have visits every 60 days for the first 6 months. Then visits will be every 90 days for 2 years, and then every 6 months for 2 years. Visits will include blood tests and may include scans.

ACTIVE_NOT_RECRUITING
Romidepsin, CC-486 (5-azacitidine), Dexamethasone, and Lenalidomide (RAdR) for Relapsed/Refractory T-cell Malignancies
Description

Background: Mature T-cell malignancies (TCMs) are a rare group of cancers that usually do not have effective treatments or cures. Because of this, participants with TCMs often relapse and have a poor overall prognosis. This trial is testing if combining several drugs against TCMs can be a more effective. Primary Objective: To test if the combination of romidepsin, CC-486 (5-azacitidine), dexamethasone, and lenalidomide (RAdR) can be given safely to participants with relapsed or treatment refractory TCM. Other (Secondary) Objective: Measure the activity of this combination treatment. Eligibility: People age 18 and older who have a failed or relapsed after standard treatments for mature TCMs. Design: Participants will be screened for eligibility by performing the following tests or procedures: Physical exam Medical history Medicine review Blood and urine tests Symptom review Bone marrow examination Total Body imaging scans or x-rays Tumor biopsy Participants will have blood tests during treatment to make sure their blood cell counts are okay. Romidepsin is infused through an IV placed in one of the veins usually in the arm. Lenalidomide, dexamethasone, and CC-486 (5-azacitidine) are pills or capsules taken by mouth. Participants are asked to keep a diary of when they take their pills to make sure they are taking these medicines properly. Participants will have tumor imaging scans after every 2nd cycle (or 6 weeks) to check if the treatment is working. If the doctors are concerned the cancer has spread to the brain and/or spine, they will have scans of the area(s) and a sampling of the fluid around the brain/spine which is obtained through a small needle inserted into the lower part of the back for a short time to collect the fluid. This procedure is called a spinal tap or lumbar puncture. Participants who have tumor in their skin will have repeat exams of their skin and sometimes photographs taken of these areas to see if the treatment is working. Participants will also be asked to give blood, saliva, and sometimes have optional biopsies of their tumor where these tests are done for research purposes. After they have completed the protocol treatment (6 cycles), they will be asked to return to clinic 30 days after treatment has ended, then every other month (or 60 days) for the first 6 months, then every 3 months (90 days) for 2 years, and then every 6 months for years 2 to 4 after completing treatment. After 4.5 years, they will be seen once a year.

COMPLETED
A Phase 1 Study of Brentuximab Vedotin Given Sequentially and Combined With Multi-Agent Chemotherapy for CD30-Positive Mature T-Cell and NK-Cell Neoplasms
Description

The purpose of this study is to assess the safety profile of brentuximab vedotin sequentially and in combination with multi-agent chemotherapy in front-line treatment for CD30-positive mature T-cell and NK-cell neoplasms, including systemic anaplastic large cell lymphoma. It is a phase 1, open-label, dose escalation study in three arms designed to define the MTD, PK, immunogenicity, and anti-tumor activity of brentuximab vedotin in sequence and in combination with multi-agent front-line chemotherapy.

TERMINATED
Irradiated Donor Cells Following Stem Cell Transplant in Controlling Cancer in Patients With Hematologic Malignancies
Description

This pilot clinical trial studies the side effects of irradiated donor cells following stem cell transplant in controlling cancer in patients with hematologic malignancies. Transfusion of irradiated donor cells (immune cells) from relatives may cause the patient's cancer to decrease in size and may help control cancer in patients receiving a stem cell transplant.

ACTIVE_NOT_RECRUITING
Talimogene Laherparepvec and Nivolumab in Treating Patients With Refractory Lymphomas or Advanced or Refractory Non-melanoma Skin Cancers
Description

This phase II trial studies how well talimogene laherparepvec and nivolumab work in treating patients with lymphomas that do not responded to treatment (refractory) or non-melanoma skin cancers that have spread to other places in the body (advanced) or do not responded to treatment. Biological therapies, such as talimogene laherparepvec, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving talimogene laherparepvec and nivolumab may work better compared to usual treatments in treating patients with lymphomas or non-melanoma skin cancers.

RECRUITING
Cholecalciferol in Improving Survival in Patients With Newly Diagnosed Cancer With Vitamin D Insufficiency
Description

This partially randomized clinical trial studies cholecalciferol in improving survival in patients with newly diagnosed cancer with vitamin D insufficiency. Vitamin D replacement may improve tumor response and survival and delay time to treatment in patients with cancer who are vitamin D insufficient.

COMPLETED
Romidepsin in Treating Patients With Lymphoma, Chronic Lymphocytic Leukemia, or Solid Tumors With Liver Dysfunction
Description

This phase I trial studies the side effects and best dose of romidepsin in treating patients with lymphoma, chronic lymphocytic leukemia, or solid tumors with liver dysfunction. Romidepsin may stop the growth of cancer cells by entering the cancer cells and by blocking the activity of proteins that are important for the cancer's growth and survival.

Conditions
GliomaHematopoietic and Lymphoid Cell NeoplasmLymphomaMetastatic Malignant Solid NeoplasmNeuroendocrine NeoplasmRecurrent Adult Soft Tissue SarcomaRecurrent Bladder CarcinomaRecurrent Breast CarcinomaRecurrent Chronic Lymphocytic LeukemiaRecurrent Colorectal CarcinomaRecurrent Head and Neck CarcinomaRecurrent Lung CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Pancreatic CarcinomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland CarcinomaRefractory Chronic Lymphocytic LeukemiaRefractory Mature T-Cell and NK-Cell Non-Hodgkin LymphomaRefractory Primary Cutaneous T-Cell Non-Hodgkin LymphomaStage III Breast Cancer AJCC v7Stage III Colorectal Cancer AJCC v7Stage III Cutaneous Melanoma AJCC v7Stage III Lung Cancer AJCC v7Stage III Pancreatic Cancer AJCC v6 and v7Stage III Prostate Cancer AJCC v7Stage III Renal Cell Cancer AJCC v7Stage III Soft Tissue Sarcoma AJCC v7Stage IIIA Breast Cancer AJCC v7Stage IIIA Colorectal Cancer AJCC v7Stage IIIA Cutaneous Melanoma AJCC v7Stage IIIB Breast Cancer AJCC v7Stage IIIB Colorectal Cancer AJCC v7Stage IIIB Cutaneous Melanoma AJCC v7Stage IIIC Breast Cancer AJCC v7Stage IIIC Colorectal Cancer AJCC v7Stage IIIC Cutaneous Melanoma AJCC v7Stage IV Breast Cancer AJCC v6 and v7Stage IV Colorectal Cancer AJCC v7Stage IV Cutaneous Melanoma AJCC v6 and v7Stage IV Lung Cancer AJCC v7Stage IV Pancreatic Cancer AJCC v6 and v7Stage IV Prostate Cancer AJCC v7Stage IV Renal Cell Cancer AJCC v7Stage IV Soft Tissue Sarcoma AJCC v7Stage IVA Colorectal Cancer AJCC v7Stage IVB Colorectal Cancer AJCC v7Unresectable Solid Neoplasm
COMPLETED
Veliparib, Bendamustine Hydrochloride, and Rituximab in Treating Patients With Relapsed or Refractory Lymphoma, Multiple Myeloma, or Solid Tumors
Description

This phase I/II trial studies the side effects and the best dose of veliparib when given together with bendamustine hydrochloride and rituximab and to see how well they work in treating patients with lymphoma, multiple myeloma, or solid tumors that have come back or have not responded to treatment. Veliparib may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as bendamustine hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Monoclonal antibodies, such as rituximab, can block cancer growth in different ways. Some find cancer cells and help kill them or carry cancer-killing substances to them. Others interfere with the ability of cancer cells to grow and spread. Giving veliparib together with bendamustine hydrochloride and rituximab may kill more cancer cells.

COMPLETED
Lenalidomide After Donor Bone Marrow Transplant in Treating Patients With High-Risk Hematologic Cancers
Description

This phase I clinical trial is studying the side effects and the best dose of lenalidomide after donor bone marrow transplant in treating patients with high-risk hematologic cancer. Biological therapies, such as lenalidomide, may stimulate the immune system in different ways and stop cancer cells from growing.

Conditions
Adult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11Adult Acute Myeloid Leukemia With t(16;16)(p13.1;q22); CBFB-MYH11Adult Acute Myeloid Leukemia With t(8;21); (q22; q22.1); RUNX1-RUNX1T1Adult Acute Myeloid Leukemia With t(9;11)(p22.3;q23.3); MLLT3-KMT2AAdult Acute Promyelocytic Leukemia With PML-RARAAdult Grade III Lymphomatoid GranulomatosisAdult Nasal Type Extranodal NK/T-Cell LymphomaAlkylating Agent-Related Acute Myeloid LeukemiaAnaplastic Large Cell LymphomaAngioimmunoblastic T-Cell LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid TissueHepatosplenic T-Cell LymphomaIntraocular LymphomaLymphomatous Involvement of Non-Cutaneous Extranodal SiteMature T-Cell and NK-Cell Non-Hodgkin LymphomaNodal Marginal Zone LymphomaPost-Transplant Lymphoproliferative DisorderPrimary Cutaneous B-Cell Non-Hodgkin LymphomaProlymphocytic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Immunoblastic LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-Cell Leukemia/LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides and Sezary SyndromeRecurrent Non-Hodgkin LymphomaRecurrent Primary Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRichter SyndromeSmall Intestinal LymphomaSplenic Marginal Zone LymphomaT-Cell Large Granular Lymphocyte LeukemiaTesticular LymphomaWaldenstrom Macroglobulinemia
COMPLETED
Dasatinib in Treating Patients With Solid Tumors or Lymphomas That Are Metastatic or Cannot Be Removed By Surgery
Description

This phase I trial studies the side effects and best dose of dasatinib in treating patients with solid tumors or lymphomas that are metastatic or cannot be removed by surgery. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

Conditions
Adult Acute Lymphoblastic Leukemia in RemissionAdult B Acute Lymphoblastic LeukemiaAdult Hepatocellular CarcinomaAdult Nasal Type Extranodal NK/T-Cell LymphomaAdult Solid NeoplasmAdult T Acute Lymphoblastic LeukemiaAdvanced Adult Hepatocellular CarcinomaAnaplastic Large Cell LymphomaAngioimmunoblastic T-Cell LymphomaChronic Lymphocytic LeukemiaCutaneous B-Cell Non-Hodgkin LymphomaExtranodal Marginal Zone Lymphoma of Mucosa-Associated Lymphoid TissueHepatosplenic T-Cell LymphomaIntraocular LymphomaLocalized Non-Resectable Adult Liver CarcinomaLocalized Resectable Adult Liver CarcinomaLymphomatous Involvement of Non-Cutaneous Extranodal SiteMature T-Cell and NK-Cell Non-Hodgkin LymphomaNodal Marginal Zone LymphomaProgressive Hairy Cell Leukemia Initial TreatmentRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Grade III Lymphomatoid GranulomatosisRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic LymphomaRecurrent Adult Liver CarcinomaRecurrent Adult Lymphoblastic LymphomaRecurrent Adult T-Cell Leukemia/LymphomaRecurrent Cutaneous T-Cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides and Sezary SyndromeRecurrent Small Lymphocytic LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaSmall Intestinal LymphomaSplenic Marginal Zone LymphomaStage II Small Lymphocytic LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic LymphomaStage III Adult Lymphoblastic LymphomaStage III Adult T-Cell Leukemia/LymphomaStage III Chronic Lymphocytic LeukemiaStage III Cutaneous T-Cell Non-Hodgkin LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IIIA Mycosis Fungoides and Sezary SyndromeStage IIIB Mycosis Fungoides and Sezary SyndromeStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Adult T-Cell Leukemia/LymphomaStage IV Chronic Lymphocytic LeukemiaStage IV Cutaneous T-Cell Non-Hodgkin LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic LymphomaStage IVA Mycosis Fungoides and Sezary SyndromeStage IVB Mycosis Fungoides and Sezary SyndromeT-Cell Large Granular Lymphocyte LeukemiaTesticular LymphomaUntreated Adult Acute Lymphoblastic LeukemiaUntreated Hairy Cell LeukemiaWaldenstrom Macroglobulinemia
RECRUITING
A Study of AZD0486 Monotherapy or in Combination With Other Anti-Cancer Agents for Mature B-Cell Malignancies
Description

The purpose of this study is to assess the safety and efficacy of AZD0486 administered as monotherapy or in combination with other anticancer agents in participants with hematological malignancies.

COMPLETED
Standard Follow-up Compared With Extended Follow-up in Treating Patients Who Have Undergone Stem Cell Transplantation for Cancer
Description

RATIONALE: Telephone counseling by trained counselors may enhance the well-being and quality of life of patients who have undergone stem cell transplantation for cancer. PURPOSE: Randomized clinical trial to compare the effectiveness of standard follow-up care with extended follow-up care in treating patients who have undergone stem cell transplantation for cancer.

Conditions
COMPLETED
Caspofungin Acetate Compared With Amphotericin B Liposomal in Treating Patients With Persistent Fever and Neutropenia Following Cancer Treatment
Description

RATIONALE: Caspofungin acetate or amphotericin B liposomal may be effective in preventing or controlling fever and neutropenia caused by chemotherapy, bone marrow transplantation, or peripheral stem cell transplantation. It is not yet known whether caspofungin acetate or amphotericin B liposomal is more effective for treating these side effects. PURPOSE: Randomized phase III trial to compare the effectiveness of caspofungin acetate with that of amphotericin B liposomal in treating patients who have persistent fever and neutropenia after receiving anticancer therapy.

Conditions
COMPLETED
Lymphocyte Infusion in Treating Patients With Relapsed Cancer After Bone Marrow or Peripheral Stem Cell Transplantation
Description

RATIONALE: White blood cells from donors may be able to kill cancer cells in patients with cancer that has recurred following bone marrow or peripheral stem cell transplantation. PURPOSE: Phase II trial to study the effectiveness of donated white blood cells in treating patients who have relapsed cancer following transplantation of donated bone marrow or peripheral stem cells.

COMPLETED
Biological Therapy Following Chemotherapy and Peripheral Stem Cell Transplantation in Treating Patients With Cancer
Description

RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. Combining chemotherapy and peripheral stem cell transplantation with biological therapy may kill more cancer cells. PURPOSE: Phase II trial to study the effectiveness of biological therapy with sargramostim, interleukin-2, and interferon alfa following chemotherapy and peripheral stem cell transplantation in treating patients who have cancer.

COMPLETED
Interleukin-12 in Treating Patients With Hematologic Cancers or Solid Tumors
Description

RATIONALE: Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of interleukin-12 in treating patients who have hematologic cancer or solid tumor.

COMPLETED
Acupuncture in Treating Mucositis-Related Pain Caused by Chemotherapy in Patients Undergoing Stem Cell Transplantation
Description

RATIONALE: Acupuncture may be effective in relieving mucositis-related pain caused by chemotherapy in patients undergoing stem cell transplantation. PURPOSE: Randomized clinical trial to study the effectiveness of acupuncture in treating mucositis-related pain caused by high-dose chemotherapy in patients who are undergoing stem cell transplantation.

Conditions
COMPLETED
Ribavirin With or Without Monoclonal Antibody Therapy in Treating Patients Who Develop RSV Pneumonia Following Peripheral Stem Cell Transplantation
Description

RATIONALE: Antivirals such as ribavirin are used to treat infections caused by viruses. It is not yet known if ribavirin is more effective with or without monoclonal antibody therapy in treating patients who develop RSV pneumonia following peripheral stem cell transplantation. PURPOSE: Randomized phase III trial to compare the effectiveness of ribavirin with or without monoclonal antibody in treating patients who develop RSV pneumonia following peripheral stem cell transplantation.

Conditions
COMPLETED
Beclomethasone in Treating Patients With Graft-Versus-Host Disease of the Esophagus, Stomach, Small Intestine, or Colon
Description

RATIONALE: Beclomethasone may be an effective treatment for graft-versus-host disease. PURPOSE: Phase I/II trial to study the effectiveness of beclomethasone in treating patients who have graft-versus-host disease of the esophagus, stomach, small intestine, or colon.

COMPLETED
Captopril in Treating Patients Undergoing Bone Marrow or Stem Cell Transplantation
Description

RATIONALE: Captopril may protect the lungs from the side effects of bone marrow or stem cell transplantation. PURPOSE: Randomized phase III trial to determine the effectiveness of captopril to lessen the side effects in patients who are undergoing bone marrow or stem cell transplantation following chemotherapy and radiation therapy.

Conditions
COMPLETED
Itraconazole Compared With Fluconazole to Prevent Infections in Patients Undergoing Peripheral Stem Cell or Bone Marrow Transplantation
Description

RATIONALE: Giving itraconazole or fluconazole may be effective in preventing infections in patients undergoing peripheral stem cell or bone marrow transplantation. It is not yet known whether itraconazole is more effective than fluconazole for preventing infections. PURPOSE: Randomized phase III trial to compare the effectiveness of itraconazole with fluconazole to prevent infections in patients undergoing peripheral stem cell or bone marrow transplantation.

Conditions
COMPLETED
Immunotherapy in Treating Patients Who Are Undergoing Bone Marrow or Peripheral Stem Cell Transplantation
Description

RATIONALE: White blood cells from donors who have been exposed to cytomegalovirus may be able to help prevent this infection from occurring in patients who are undergoing bone marrow or peripheral stem cell transplantation. PURPOSE: Phase II trial to study the effectiveness of donated white blood cells to prevent cytomegalovirus infection in patients who are undergoing bone marrow or peripheral stem cell transplantation.

Conditions