Treatment Trials

24 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Frequency and Clinical Phenotype of BAP1 Hereditary Predisposition Syndrome
Description

This research will have a significant impact on the overall management of those cancer patients and their family members who are at risk for hereditary cancer due to germline inactivation of BAP1. Our study will ultimately facilitate the development of novel screening, prevention and treatment strategies for these individuals with the syndrome. Because the vast majority of UM develop in pre-existing nevi, characterization of individuals at high risk for development of UM will allow closer screening and earlier intervention which would improve the treatment outcome not only for retaining vision but also for overall survival. Similarly in patients with germline BAP1 mutation CM develops in premalignant atypical melanocytic lesions and careful follow up of these patients will improve the outcome of their disease. In addition this study could have impact on the management of patients with personal and/or family history of several other cancers reported in patients with germline BAP1 mutation such as mesothelioma, renal cell carcinoma, cholangiocarcinoma, hepatocellular carcinoma, meningioma and basal cell carcinoma.

RECRUITING
Phase I Study of Oral ONC206 in Recurrent and Rare Primary Central Nervous System Neoplasms
Description

The primary objective of this Phase 1, open-label, dose-escalation, and exploratory study is to evaluate the safety and tolerability profile (establish the maximum-tolerated dose) and evaluate the occurrence of dose-limiting toxicities (DLTs) following single weekly or multiple-day weekly dose regimens of single-agent, oral ONC206 in patients with recurrent, primary central nervous system (CNS) neoplasms.

RECRUITING
Optune Delivered Electric Field Therapy and Bevacizumab in Treating Patients With Recurrent or Progressive Grade 2 or 3 Meningioma
Description

The purpose of this research study is to determine the effects bevacizumab (the study drug) combined with Optune (the study device) tumor treatment field therapy has on meningiomas. Bevacizumab is considered investigational because the US Food and Drug Administration (FDA) has not approved its use for the treatment of meningiomas. The study drug is a medication that blocks the growth of new blood vessels. It is thought that the study drug may interfere with the growth of new blood vessels and therefore might stop tumor growth, and possibly shrink the tumor by keeping it from receiving nutrients and oxygen supplied by the blood vessels. Optune is also considered investigational because the US FDA has not approved its use for the treatment of meningiomas. Optune is a device that the patient will wear and use for at least 18 hours of each day. It delivers alternating electrical current to the patient's brain tumor and by doing so interrupts a process called mitosis. Mitosis needs to occur in order for cell division to occur and allows tumors to grow. By slowing this process, we hypothesize that meningioma growth may also be slowed.

ACTIVE_NOT_RECRUITING
An Open-Label Phase II Study of Nivolumab or Nivolumab/Ipilimumab in Adult Participants With Progessive/ Recurrent Meningioma
Description

This research study is studying targeted immunotherapies as a possible treatment for recurrent meningioma. The names of the study interventions involved in this study are nivolumab and ipilimumab.

Conditions
ACTIVE_NOT_RECRUITING
Immune Checkpoint Inhibitor Nivolumab in People With Recurrent Select Rare CNS Cancers
Description

Background: More than 130 primary tumors of the central nervous system (CNS) have been identified. Most affect less than 1,000 people in the United States each year. Because these tumors are so rare, there are few proven therapies. This study will test whether the immunotherapy drug nivolumab is an effective treatment for people with rare CNS tumors. Objectives: To learn if stimulating the immune system using the drug nivolumab can shrink tumors in people with rare CNS (brain or spine) tumors or increase the time it takes for these tumors to grow or spread. Eligibility: Adults whose rare CNS tumor has returned. Design: Individuals will be screened: * Heart and blood tests * Physical and neurological exam * Hepatitis tests * Pregnancy test * MRI. They will lay in a machine that takes pictures. * Tumor tissue sample. This can be from a previous procedure. At the start of the study, participants will have blood tests. They will answer questions about their symptoms and their quality of life. Individuals will get nivolumab in a vein every 2 weeks for up to 64 weeks. Individuals will have monthly blood tests. Every other month they will have an MRI and a neurologic function test. They will also answer questions about their quality of life. Genetic tests will be done on individuals' tumor tissue. Individuals will be contacted if any clinically important results are found. After treatment ends, individuals will be monitored for up to 5 years. They will have a series of MRIs and neurological function tests. They will be asked to report any symptoms they experience....

ACTIVE_NOT_RECRUITING
Pilot Study of Optune (NovoTTF-100A) for Recurrent Atypical and Anaplastic Meningioma
Description

The purpose of this study is to find out what effects, good or bad, the Optune device has on the patient and meningioma. This study is being done because currently there are no proven effective medical treatments for a progressive meningioma that has failed surgery and/or radiation. The study uses an experimental device called Optune. Optune is "experimental" because it has not been approved by the U.S. Food and Drug Administration (FDA) for this type of tumor, although it has been approved for a different type of brain tumor.

Conditions
SUSPENDED
Rare CNS Tumors Outcomes &Risk
Description

Background: Primary tumors of the brain and spine are those that start in the brain or spine. These tumors are rare, accounting for \<2% of all cancers diagnosed in the United States. Some of these tumors occur in less than 2,000 people per year. Researchers want to study a large group of people with this kind of tumor. They want to learn more about the tumors, including the risk factors related to how they develop in adults. Objective: To collect health and gene data to learn about what changes are associated with a rare CNS Tumors, to eventually screen for these changes or target the genes in treatment. Eligibility: Adult participants \>= 18 years of age who self- identify as being diagnosed with one of 12 rare CNS tumors, including: Atypical teratoid rhabdoid tumor (ATRT); Brainstem and midline gliomas; Choroid plexus tumors; Ependymoma; High grade meningioma; Gliomatosis cerebri; Medulloblastoma; Oligodendroglioma / Anaplastic oligodendroglioma; Pineal region tumors; Pleomorphic xanthroastrocytoma / Anaplastic pleomorphic xanthroastrocytoma; PNET (Supratentorial embryonal tumor); Primary CNS sarcoma / Secondary CNS sarcoma (Gliosarcoma). Design: Participants will be invited to participate through an ad on the CERN Foundation website (ependymoma), information on the Neuro-Oncology Branch website and other identified advocacy and social media sites and direct mailer to those who have already participated in the EO projects. (Registered Trademark) * Interested participants will complete an enrollment form that will be sent to the study coordinator. * The coordinator will then send the participant a consent form and schedule a time for phone consent. * Participants will complete the Rare CNS tumors Outcomes Survey and once completed, the Rare CNS tumors Risk survey. (Registered Trademark) * The questions on the Outcomes Survey will include treatment history, symptoms social and clinical information and it should take about 25-35 minutes. The Risk survey will cover their demographic information, personal medical history, family medical history and environmental exposures. This should take about 52 minutes. * Participants who have physical problems can have help with the surveys and forms. * Once the surveys are completed, participants will be mailed a kit to collect saliva for germline DNA. Participants will ship the sample to the study team in a prepaid envelope * If the sample is not sufficient, participants will be contacted to give provide an additional sample....

TERMINATED
Gamma-Secretase Inhibitor RO4929097 in Treating Young Patients With Relapsed or Refractory Solid Tumors, CNS Tumors, Lymphoma, or T-Cell Leukemia
Description

This phase I/II clinical trial is studying the side effects and best dose of gamma-secretase inhibitor RO4929097 and to see how well it works in treating young patients with relapsed or refractory solid tumors, CNS tumors, lymphoma, or T-cell leukemia. Gamma-secretase inhibitor RO4929097 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

Conditions
Childhood Atypical Teratoid/Rhabdoid TumorChildhood Central Nervous System ChoriocarcinomaChildhood Central Nervous System GerminomaChildhood Central Nervous System Mixed Germ Cell TumorChildhood Central Nervous System TeratomaChildhood Central Nervous System Yolk Sac TumorChildhood Choroid Plexus TumorChildhood CraniopharyngiomaChildhood EpendymoblastomaChildhood Grade I MeningiomaChildhood Grade II MeningiomaChildhood Grade III MeningiomaChildhood Infratentorial EpendymomaChildhood MedulloepitheliomaChildhood Mixed GliomaChildhood OligodendrogliomaChildhood Supratentorial EpendymomaGonadotroph AdenomaPituitary Basophilic AdenomaPituitary Chromophobe AdenomaPituitary Eosinophilic AdenomaProlactin Secreting AdenomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Brain Stem GliomaRecurrent Childhood Central Nervous System Embryonal TumorRecurrent Childhood Cerebellar AstrocytomaRecurrent Childhood Cerebral AstrocytomaRecurrent Childhood EpendymomaRecurrent Childhood Grade III Lymphomatoid GranulomatosisRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood MedulloblastomaRecurrent Childhood PineoblastomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Childhood Spinal Cord NeoplasmRecurrent Childhood Subependymal Giant Cell AstrocytomaRecurrent Childhood Supratentorial Primitive Neuroectodermal TumorRecurrent Childhood Visual Pathway and Hypothalamic GliomaRecurrent Childhood Visual Pathway GliomaRecurrent Pituitary TumorRecurrent/Refractory Childhood Hodgkin LymphomaT-cell Childhood Acute Lymphoblastic LeukemiaT-cell Large Granular Lymphocyte LeukemiaTSH Secreting AdenomaUnspecified Childhood Solid Tumor, Protocol Specific
COMPLETED
Vorinostat and Temozolomide in Treating Young Patients With Relapsed or Refractory Primary Brain Tumors or Spinal Cord Tumors
Description

This phase I trial is studying the side effects and best dose of vorinostat when given together with temozolomide in treating young patients with relapsed or refractory primary brain tumors or spinal cord tumors. Vorinostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Vorinostat may help temozolomide work better by making tumor cells more sensitive to the drug.

COMPLETED
ABT-888 and Temozolomide in Treating Young Patients With Recurrent or Refractory CNS Tumors
Description

This phase I trial is studying the side effects and best dose of ABT-888 when given in combination with temozolomide in treating young patients with recurrent or refractory CNS tumors. ABT-888 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving ABT-888 together with temozolomide may kill more tumor cells.

COMPLETED
SJDAWN: St. Jude Children's Research Hospital Phase 1 Study Evaluating Molecularly-Driven Doublet Therapies for Children and Young Adults With Recurrent Brain Tumors
Description

Approximately 90% of children with malignant brain tumors that have recurred or relapsed after receiving conventional therapy will die of disease. Despite this terrible and frustrating outcome, continued treatment of this population remains fundamental to improving cure rates. Studying this relapsed population will help unearth clues to why conventional therapy fails and how cancers continue to resist modern advances. Moreover, improvements in the treatment of this relapsed population will lead to improvements in upfront therapy and reduce the chance of relapse for all. Novel therapy and, more importantly, novel approaches are sorely needed. This trial proposes a new approach that evaluates rational combination therapies of novel agents based on tumor type and molecular characteristics of these diseases. The investigators hypothesize that the use of two predictably active drugs (a doublet) will increase the chance of clinical efficacy. The purpose of this trial is to perform a limited dose escalation study of multiple doublets to evaluate the safety and tolerability of these combinations followed by a small expansion cohort to detect preliminary efficacy. In addition, a more extensive and robust molecular analysis of all the participant samples will be performed as part of the trial such that we can refine the molecular classification and better inform on potential response to therapy. In this manner the tolerability of combinations can be evaluated on a small but relevant population and the chance of detecting antitumor activity is potentially increased. Furthermore, the goal of the complementary molecular characterization will be to eventually match the therapy with better predictive biomarkers. PRIMARY OBJECTIVES: * To determine the safety and tolerability and estimate the maximum tolerated dose/recommended phase 2 dose (MTD/RP2D) of combination treatment by stratum. * To characterize the pharmacokinetics of combination treatment by stratum. SECONDARY OBJECTIVE: * To estimate the rate and duration of objective response and progression free survival (PFS) by stratum.

Conditions
Anaplastic AstrocytomaAnaplastic EpendymomaAnaplastic GangliogliomaAnaplastic MeningiomaAnaplastic OligodendrogliomaPleomorphic Xanthoastrocytoma, AnaplasticAtypical Teratoid/Rhabdoid TumorBrain CancerBrain TumorCentral Nervous System NeoplasmsChoroid Plexus CarcinomaCNS Embryonal Tumor With Rhabdoid FeaturesGanglioneuroblastoma of Central Nervous SystemCNS TumorEmbryonal Tumor of CNSEpendymomaGlioblastomaGliomaGlioma, MalignantMedulloblastomaMedulloblastoma; Unspecified SiteMedulloepitheliomaNeuroepithelial TumorNeoplasmsNeoplasms, NeuroepithelialPapillary Tumor of the Pineal Region (High-grade Only)Pediatric Brain TumorPineal Parenchymal Tumor of Intermediate Differentiation (High-grade Only)PineoblastomaPrimitive Neuroectodermal TumorRecurrent MedulloblastomaRefractory Brain TumorNeuroblastoma. CNSGlioblastoma, IDH-mutantGlioblastoma, IDH-wildtypeMedulloblastoma, Group 3Medulloblastoma, Group 4Glioma, High GradeNeuroepithelial Tumor, High GradeMedulloblastoma, SHH-activated and TP53 MutantMedulloblastoma, SHH-activated and TP53 WildtypeMedulloblastoma, Chromosome 9q LossMedulloblastoma, Non-WNT Non-SHH, NOSMedulloblastoma, Non-WNT/Non-SHHMedulloblastoma, PTCH1 MutationMedulloblastoma, WNT-activatedEpendymoma, RecurrentGlioma, Recurrent High GradeGlioma, Recurrent MalignantEmbryonal Tumor, NOSGlioma, Diffuse Midline, H3K27M-mutantEmbryonal Tumor With Multilayered Rosettes (ETMR)Ependymoma, NOS, WHO Grade IIIEpendymoma, NOS, WHO Grade IIMedulloblastoma, G3/G4Ependymoma, RELA Fusion Positive
WITHDRAWN
Studying Cerebrospinal Fluid Proteins and Angiogenesis Proteins in Young Patients With Newly Diagnosed Central Nervous System Tumors
Description

RATIONALE: Studying samples of cerebrospinal fluid from patients with cancer in the laboratory may help doctors identify biomarkers related to cancer. PURPOSE: This laboratory study is studying cerebrospinal fluid proteins and angiogenesis proteins in young patients with newly diagnosed central nervous system tumors.

TERMINATED
Dasatinib, Ifosfamide, Carboplatin, and Etoposide in Treating Young Patients With Metastatic or Recurrent Malignant Solid Tumors
Description

RATIONALE: Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs in chemotherapy, such as ifosfamide, carboplatin, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving dasatinib together with ifosfamide, carboplatin, and etoposide may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of dasatinib when given together with ifosfamide, carboplatin, and etoposide and to see how well they work in treating young patients with metastatic or recurrent malignant solid tumors.

TERMINATED
MK0752 in Treating Young Patients With Recurrent or Refractory CNS Cancer
Description

RATIONALE: MK0752 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of MK0752 in treating young patients with recurrent or refractory CNS cancer.

COMPLETED
Talabostat Combined With Temozolomide or Carboplatin in Treating Young Patients With Relapsed or Refractory Brain Tumors or Other Solid Tumors
Description

RATIONALE: Talabostat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as temozolomide and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving talabostat together with temozolomide or carboplatin may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of talabostat when given together with temozolomide or carboplatin in treating young patients with relapsed or refractory brain tumors or other solid tumors.

COMPLETED
Temozolomide, Vincristine, and Irinotecan in Treating Young Patients With Refractory Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as temozolomide, vincristine, and irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of irinotecan when given together with temozolomide and vincristine in treating young patients with refractory solid tumors.

TERMINATED
Topotecan in Treating Young Patients With Neoplastic Meningitis Due to Leukemia, Lymphoma, or Solid Tumors
Description

RATIONALE: Drugs used in chemotherapy, such as topotecan, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase I trial is studying the side effects, best way to give, and best dose of topotecan when given by intraventricular infusion in treating young patients with neoplastic meningitis due to leukemia, lymphoma, or solid tumors.

COMPLETED
Chemotherapy and Stem Cell Transplantation in Treating Children With Central Nervous System Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of combining chemotherapy with peripheral stem cell transplantation in treating children who have central nervous system cancer.

COMPLETED
SCH 66336 in Treating Children With Recurrent or Progressive Brain Tumors
Description

RATIONALE: SCH 66336 may stop the growth of tumor cells by blocking the enzymes necessary for cancer cell growth. PURPOSE: This phase I trial is studying the side effects and best dose of SCH 66336 in treating children with recurrent or progressive brain tumors.

COMPLETED
Peripheral Stem Cell Transplantation Plus Chemotherapy in Treating Patients With Malignant Solid Tumors
Description

RATIONALE: Peripheral stem cell transplantation may be able to replace immune cells that were destroyed by chemotherapy used to kill tumor cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining chemotherapy with peripheral stem cell transplantation may allow the doctor to give higher doses of chemotherapy drugs and kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of cyclophosphamide when given together with combination chemotherapy and a peripheral stem cell transplant in treating patients with malignant solid tumors.

COMPLETED
Development of Strategies to Increase Enrollment in Clinical Trials for Children With Cancer
Description

RATIONALE: Taking part in a clinical trial may help children with cancer receive more effective treatment. PURPOSE: Determine why patients who are eligible for protocols made available through the Pediatric Oncology Group do not enroll in them, and develop strategies to increase enrollment on these clinical trials.