Treatment Trials

56 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Olaparib in Treating Patients With Metastatic Biliary Tract Cancer With Aberrant DNA Repair Gene Mutations
Description

This phase II trial studies how well olaparib works in treating patients with biliary tract cancer that has spread to other places in the body (metastatic) and with aberrant DNA repair gene mutations. Olaparib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Atezolizumab With or Without Cobimetinib in Treating Patients With Metastatic Bile Duct Cancer That Cannot Be Removed by Surgery or Gallbladder Cancer
Description

This randomized phase II trial studies how well atezolizumab with or without cobimetinib works in treating patients with bile duct cancer that has spread to other places in the body (metastatic) and cannot be removed by surgery (unresectable) or gallbladder cancer. Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Cobimetinib is used in patients whose cancer has a mutated (changed) form of a gene called BRAF. It is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving atezolizumab with cobimetinib may work better at treating patients with bile duct and gallbladder cancer.

WITHDRAWN
Ricolinostat, Gemcitabine Hydrochloride, and Cisplatin in Treating Patients With Unresectable or Metastatic Cholangiocarcinoma
Description

This phase Ib trial studies the side effects and best dose of ricolinostat when given together with gemcitabine hydrochloride and cisplatin in treating patients with cholangiocarcinoma that cannot be removed by surgery or has spread to other places in the body. Ricolinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as gemcitabine hydrochloride and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ricolinostat together with gemcitabine hydrochloride and cisplatin may work better in treating patients with cholangiocarcinoma that cannot be removed by surgery or has spread to other places.

COMPLETED
Ramucirumab in Treating Patients With Advanced or Metastatic, Previously Treated Biliary Cancers That Cannot Be Removed by Surgery
Description

This phase II trial studies how well ramucirumab works in treating patients with previously treated biliary cancers that have spread to other places in the body and usually cannot be cured or controlled with treatment (advanced) or have spread to other places in the body (metastatic) and cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as ramucirumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread.

COMPLETED
Gemcitabine Hydrochloride, Cisplatin, and Nab-Paclitaxel in Treating Patients With Advanced or Metastatic Biliary Cancers
Description

This phase II trial studies how well gemcitabine hydrochloride, cisplatin, and nab-paclitaxel (paclitaxel albumin-stabilized nanoparticle formulation) work in treating patients with biliary cancers (which includes the gallbladder and bile ducts inside and outside the liver) that have spread to other places in the body and usually cannot be cured or controlled with treatment. Drugs used in chemotherapy, such as gemcitabine hydrochloride, cisplatin, and paclitaxel albumin-stabilized nanoparticle formulation, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving more than one drug (combination chemotherapy) may kill more tumor cells.

COMPLETED
CPI-613 in Treating Patients With Advanced or Metastatic Bile Duct Cancer That Cannot Be Removed By Surgery
Description

This pilot clinical trial studies 6,8-bis(benzylthio)octanoic acid in treating patients with advanced or metastatic cholangiocarcinoma that cannot be removed by surgery. 6,8-Bis(benzylthio)octanoic acid may stop the growth of cholangiocarcinoma by blocking blood flow to the tumor

COMPLETED
Sorafenib Tosylate and Erlotinib Hydrochloride in Treating Patients With Locally Advanced, Unresectable, or Metastatic Gallbladder Cancer or Cholangiocarcinoma
Description

This phase II trial is studying how well giving sorafenib tosylate together with erlotinib hydrochloride works in treating patients with locally advanced, unresectable, or metastatic gallbladder cancer or cholangiocarcinoma. Sorafenib tosylate and erlotinib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth or by blocking blood flow to the tumor.

COMPLETED
Intravital Microscopy in Human Solid Tumors
Description

This study will investigate the tumor-associated vasculature of patients with solid tumors. The investigators will use a technology known as intravital microscopy (IVM) in order to visualize in real-time the vessels associated with solid tumors. The IVM observations may determine if an individual patient's tumor vessels would be amenable to receiving systemic therapy, based on the functionality of the vessels.

ACTIVE_NOT_RECRUITING
Testing A New Combination of Anti-cancer Immune Therapies, Atezolizumab and CDX-1127 (Varlilumab) With or Without the Addition of a Third Anti-cancer Drug, Cobimetinib, for Advanced-Stage Biliary Tract Cancer
Description

This phase II trial investigates the effect of combining two immune therapies, atezolizumab and CDX-1127 (varlilumab), with or without cobimetinib, in treating patients with biliary tract cancer that cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as atezolizumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Varlilumab is an immune agonist antibody that may further strengthen the immune system's attack on the cancer. Cobimetinib is in a class of medications called kinase inhibitors. It works by blocking the action of an abnormal protein that signals cancer cells to multiply. This helps slow or stop the spread of cancer cells. Giving atezolizumab in combination with varlilumab and cobimetinib may work better than atezolizumab and varlilumab alone in treating patients with unresectable biliary tract cancer.

COMPLETED
PET-CT in Determining the Radioembolization Dose Delivered to Patients With Liver Metastasis, Primary Liver Cancer, or Biliary Cancer
Description

This clinical trial studies positron emission tomography (PET)-computed tomography (CT) in determining the radiation dose delivered with radioactive spheres to patients with liver metastasis or primary liver or biliary cancer. Comparing results of diagnostic procedures dose before and after delivery of radioactive spheres to the liver may help determine radioembolization dose and plan the best treatment for liver metastasis or primary liver or biliary cancer.

COMPLETED
Genotype-guided Dosing of mFOLFIRINOX Chemotherapy in Patients With Previously Untreated Advanced Gastrointestinal Malignancies
Description

This study is being done to determine the dose of a chemotherapy drug (irinotecan \[irinotecan hydrochloride\]) that can be tolerated as part of a combination of drugs. There is a combination of chemotherapy drugs often used to treat gastrointestinal cancer, which consists of 5-FU (fluorouracil), leucovorin (leucovorin calcium), irinotecan and oxaliplatin and is known as "FOLFIRINOX". FOLFIRINOX is a current drug therapy combination (or regimen) used for people with advanced pancreatic cancer, although this combination is not Food and Drug Administration (FDA) approved for this indication. FOLFIRINOX was recently shown in a separate clinical trial to increase survival compared to another commonly used drug in pancreatic cancer called gemcitabine. FOLFIRINOX is also a reasonable regimen for those with other advanced cancers of the gastrointestinal tract, including colon cancer, rectal cancer, esophagus cancer, stomach cancer, gall bladder cancer, bile duct cancer, ampullary cancer, and cancers with an unknown primary location. The best dose of irinotecan to use in FOLFIRINOX is not known. This study will analyze one gene (uridine 5'-diphospho \[UDP\] glucuronosyltransferase 1 family, polypeptide A1 \[UGT1A1\] gene) of subjects for the presence of an alteration in that gene, which may affect how the body handles irinotecan. Genes help determine some of the investigators individual characteristics, such as eye color, height and skin tone. Genes may also determine why people get certain diseases and how medicines may affect them. The result of the genetic analysis will divide subjects into one of three groups: A, B, or C. Group A (approximately 45% of subjects) will receive the standard dose of irinotecan. Group B (approximately 45% of subjects) will receive a lower dose of irinotecan. Group C (approximately 10% of subjects) will receive an even lower dose of irinotecan

COMPLETED
Dolastatin 10 in Treating Patients With Metastatic Or Recurrent Liver, Bile Duct, or Gallbladder Cancer
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. PURPOSE: Phase II trial to study the effectiveness of dolastatin 10 in treating patients with metastatic or recurrent liver, bile duct, or gallbladder cancer.

COMPLETED
A Phase 2 Trial of Regorafenib as A Single Agent in Advanced and Metastatic Biliary Tract Carcinoma/Cholangiocarcinoma Patients Who Have Failed First-line Chemotherapy
Description

Based on the facts of multiple pathways involvement in cholangiocarcinoma tumor genesis, including EGFR, Ras, Raf, VEGFR, and PDGFR, with evidence of overexpression of these proteins associated with tumor stage, prognosis and response to therapy. Multikinase inhibitor targeting multiple tumor pathways agent as regorafenib should be the ideal candidate for evaluating the anti-cancer activity for the disease as cholangiocarcinoma. More importantly, regorafenib likely holds promise in this disease setting with known effectiveness either as a single agent or in combination with cytotoxic chemotherapy agents in multiple solid tumors as above and the toxicity profile.

RECRUITING
A Study of CF33-hNIS (VAXINIA), an Oncolytic Virus, as Monotherapy or in Combination With Pembrolizumab in Adults With Metastatic or Advanced Solid Tumors
Description

This is an open-label, dose-escalation, multi-center phase I study evaluating the safety of CF33-hNIS (hNIS - human sodium iodide symporter) administered via two routes of administration, intratumoral (IT) or intravenous (IV), either as a monotherapy or in combination with pembrolizumab in patients with metastatic or advanced solid tumors.

RECRUITING
PDS01ADC in Combination With Hepatic Artery Infusion Pump (HAIP) and Systemic Therapy for Subjects With Metastatic Colorectal Cancer, Intrahepatic Cholangiocarcinoma, or Metastatic Adrenocortical Carcinoma
Description

Background: One way to treat liver cancer is to deliver chemotherapy drugs only to the liver (and not to the whole body). Researchers want to see if adding the drug PDS01ADC can improve the treatment. The drug triggers the immune system to fight cancer.\<TAB\> Objective: To see if treatment with HAIPs to deliver liver-directed chemotherapy in combination with PDS01ADC is effective for certain cancers. Eligibility: People aged 18 and older who have cancer of the bile ducts that is only in the liver, or colorectal cancer that has spread to the liver. Design: Participants will be screened with: Medical history Physical exam Blood tests Pregnancy test (if needed) Tumor biopsy (if needed) Electrocardiogram Computed tomography (CT) scans Participants will have an abdominal operation. A catheter will be placed into an artery that feeds blood to the liver. The catheter will then be attached to the HAIP. The HAIP will lay under the skin on the left side of the abdomen. Participants will have chemotherapy drugs or heparin with saline infused into the HAIP every 2 weeks. PDS01ADC will be injected under the skin every 4 weeks. They will get systemic chemotherapy through an IV or mediport every 2 weeks. They will receive this treatment until their cancer gets worse or they have bad side effects. Participants will have 2 study visits each month. They will have CT scans every 8 weeks. At visits, they will repeat some screening tests. Participants will have a follow-up visit 1 month after treatment ends. Then they will be contacted every 6 months for 5 years.

RECRUITING
Pressurized Intraperitoneal Aerosolized Nab-Paclitaxel in Combination With Gemcitabine and Cisplatin for the Treatment of Biliary Tract Cancer Patients With Peritoneal Metastases
Description

This phase I trial studies the side effects of pressurized intraperitoneal aerosolized chemotherapy (PIPAC) nab-paclitaxel in combination with gemcitabine and cisplatin in treating patients with biliary tract cancer that has spread to the peritoneum (peritoneal metastases). PIPAC involves the administration of intraperitoneal chemotherapy (anticancer drugs given directly to the lining of the abdomen). PIPAC uses a nebulizer (a device that turns liquids into a fine mist) which is connected to a high-pressure injector and inserted into the abdomen (part of the body that contains the digestive organs) during a laparoscopic procedure (a surgery using small incisions to introduce air and insert a camera and other instruments into the abdominal cavity for diagnosis and/or to perform routine surgical procedures). Pressurization of the liquid chemotherapy through the study device results in aerosolization (a fine mist or spray) of the chemotherapy intra-abdominally (into the abdomen), which results in the drug reaching more of the tissue as well as reaching deeper into the tissue, which reduces the amount of chemotherapy that needs to be used and potentially reduces side effect. Chemotherapy drugs, such as nab-paclitaxel, gemcitabine, and cisplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving nab-paclitaxel via PIPAC in combination with standard of care gemcitabine and cisplatin may reduce side effects and make this chemotherapy regimen more tolerable in patients with biliary tract cancer that has spread to the spread to the peritoneum.

RECRUITING
A Phase 1/2a Study of DB-1303/BNT323 in Advanced/Metastatic Solid Tumors
Description

This is a dose-escalation and dose-expansion Phase 1/2a trial to evaluate the safety and tolerability of DB-1303/BNT323 in subjects with advanced solid tumors that express HER2.

COMPLETED
LYT-200 Alone and in Combination With Chemotherapy or Tislelizumab in Patients With Locally Advanced or Metastatic Solid Tumors
Description

A Phase 1/2 Open-label, Multi-center Study of the Safety, Pharmacokinetics, and Anti-tumor Activity of LYT-200 Alone and in Combination with Chemotherapy or Tislelizumab in Patients with Metastatic Solid Tumors

ACTIVE_NOT_RECRUITING
Testing the Combination of Pevonedistat With Chemotherapy for Bile Duct Cancer of the Liver
Description

This phase II trial studies how well pevonedistat alone or in combination with chemotherapy (paclitaxel and carboplatin) works in treating patients with bile duct cancer of the liver. Pevonedistat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Chemotherapy drugs, such as paclitaxel and carboplatin, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. This study may help the study doctors find out how well pevonedistat shrinks bile duct cancer of the liver when given alone and when in combination with paclitaxel and carboplatin.

COMPLETED
Dasatinib for the Prevention of Oxaliplatin-Induced Neuropathy in Patients With Metastatic Gastrointestinal Cancer Receiving FOLFOX Chemotherapy With or Without Bevacizumab
Description

This phase Ib trial studies side effects and best dose of dasatinib in preventing oxaliplatin-induced peripheral neuropathy in patients with gastrointestinal cancers who are receiving FOLFOX regimen with or without bevacizumab. Drugs used in chemotherapy, such as leucovorin, fluorouracil, and oxaliplatin (FOLFOX regimen), work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. However, the buildup of oxaliplatin in the cranial nerves can result in damage or the nerves. Dasatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Blocking these enzymes may reduce oxaliplatin-induced peripheral neuropathy.

TERMINATED
Study of PF-06940434 in Patients With Advanced or Metastatic Solid Tumors.
Description

Open-label, multi-center, non-randomized, multiple dose, safety, tolerability, pharmacokinetic, and pharmacodynamics and clinical activity study of PF-06940434 (Integrin alpha-V/beta-8 Antagonist) in patients with SCCHN (Squamous Cell Carcinoma of the Head and Neck), renal cell carcinoma (RCC - clear cell and papillary), ovarian, gastric, esophageal, esophageal (adeno and squamous), lung squamous cell, pancreatic and biliary duct, endometrial, melanoma and urothelial tumors. This study contains two parts, single agent dose escalation (Part 1A), dose finding of PF 06940434 in combination with anti-PD-1 (Part 1B) and dose expansion (Part 2). Part 2 Dose Combination Expansion will enroll participants into 3 cohorts at doses determined from Part 1B in order to further evaluate the safety of PF-06940434 in combination with anti-PD-1.

ACTIVE_NOT_RECRUITING
Guadecitabine and Durvalumab in Treating Patients With Advanced Liver, Pancreatic, Bile Duct, or Gallbladder Cancer
Description

This phase Ib trial studies the side effects and best dose of guadecitabine and how well it works when given together with durvalumab in treating patients with liver, pancreatic, bile duct, or gallbladder cancer that has spread to other places in the body. Guadecitabine may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as durvalumab, may block tumor growth in different ways by targeting certain cells. Giving guadecitabine and durvalumab may work better in treating patients with liver, pancreatic, bile duct, or gallbladder cancer.

WITHDRAWN
Study to Test the Benefit and Safety of GM-CT-01 in Combination With 5-FU to Treat Bile Duct and Gall Bladder Cancer
Description

The purpose of this clinical trial is to determine whether the combination of the established chemotherapeutic agent 5-fluorouracil(5-FU) and the large carbohydrate molecule GM-CT-01 is beneficial in treating advanced gall bladder and bile duct cancer.

COMPLETED
S0514 Sorafenib in Treating Patients With Unresectable or Metastatic Gallbladder Cancer or Cholangiocarcinoma
Description

This phase II trial is studying how well sorafenib works in treating patients with unresectable or metastatic gallbladder cancer or cholangiocarcinoma. Sorafenib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor

COMPLETED
RAV12 in Treating Patients With Metastatic or Recurrent Adenocarcinoma
Description

RATIONALE: Monoclonal antibodies, such as RAV12, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. PURPOSE: This phase I trial is studying the side effects and best dose of RAV12 in treating patients with metastatic or recurrent adenocarcinoma.

Conditions
COMPLETED
Lapatinib in Treating Patients With Locally Advanced or Metastatic Biliary Tract or Liver Cancer That Cannot Be Removed By Surgery
Description

This phase II trial is studying how well lapatinib works in treating patients with locally advanced or metastatic biliary tract or liver cancer that cannot be removed by surgery. Lapatinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Gemcitabine Plus Pemetrexed Disodium in Treating Patients With Unresectable or Metastatic Biliary Tract or Gallbladder Cancer
Description

RATIONALE: Drugs used in chemotherapy such as gemcitabine work in different ways to stop tumor cells from dividing so they stop growing or die. Pemetrexed disodium may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth. Combining gemcitabine with pemetrexed disodium may kill more tumor cells. PURPOSE: This phase I/II trial is studying the side effects and best dose of gemcitabine when given together with pemetrexed disodium to see how well it works in treating patients with unresectable or metastatic biliary tract or gallbladder cancer.

COMPLETED
S0202 Gemcitabine and Capecitabine for Unresectable Locally Advanced Metastatic Gallbladder Cancer or Cholangiocarcinoma
Description

RATIONALE: Drugs used in chemotherapy, such as gemcitabine and capecitabine, use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase II trial to study the effectiveness of combining gemcitabine with capecitabine in treating patients who have locally advanced or metastatic gallbladder cancer or cholangiocarcinoma.

COMPLETED
7-Hydroxystaurosporine and Irinotecan Hydrochloride in Treating Patients With Metastatic or Unresectable Solid Tumors or Triple Negative Breast Cancer (Currently Accruing Only Triple-negative Breast Cancer Patients Since 6/8/2007)
Description

This phase I trial is studying the side effects and best dose of giving 7-hydroxystaurosporine together with irinotecan hydrochloride in treating patients with metastatic or unresectable solid tumors, including triple-negative breast cancer (currently enrolling only patients with triple-negative breast cancer since 6/8/2007). Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Giving 7-hydroxystaurosporine together with irinotecan hydrochloride may help kill more cancer cells by making tumor cells more sensitive to the drug.

Conditions
Advanced Adult Primary Liver CancerCarcinoma of the AppendixEstrogen Receptor-negative Breast CancerExtensive Stage Small Cell Lung CancerGastrointestinal Stromal TumorHER2-negative Breast CancerMetastatic Gastrointestinal Carcinoid TumorOvarian SarcomaOvarian Stromal CancerProgesterone Receptor-negative Breast CancerRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Adult Primary Liver CancerRecurrent Anal CancerRecurrent Basal Cell Carcinoma of the LipRecurrent Borderline Ovarian Surface Epithelial-stromal TumorRecurrent Breast CancerRecurrent Cervical CancerRecurrent Colon CancerRecurrent Endometrial CarcinomaRecurrent Esophageal CancerRecurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityRecurrent Extrahepatic Bile Duct CancerRecurrent Gallbladder CancerRecurrent Gastric CancerRecurrent Gastrointestinal Carcinoid TumorRecurrent Inverted Papilloma of the Paranasal Sinus and Nasal CavityRecurrent Lymphoepithelioma of the NasopharynxRecurrent Lymphoepithelioma of the OropharynxRecurrent Metastatic Squamous Neck Cancer With Occult PrimaryRecurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Non-small Cell Lung CancerRecurrent Ovarian Epithelial CancerRecurrent Ovarian Germ Cell TumorRecurrent Pancreatic CancerRecurrent Prostate CancerRecurrent Rectal CancerRecurrent Salivary Gland CancerRecurrent Small Cell Lung CancerRecurrent Small Intestine CancerRecurrent Squamous Cell Carcinoma of the HypopharynxRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityRecurrent Verrucous Carcinoma of the LarynxRecurrent Verrucous Carcinoma of the Oral CavitySmall Intestine AdenocarcinomaSmall Intestine LeiomyosarcomaSmall Intestine LymphomaStage IV Adenoid Cystic Carcinoma of the Oral CavityStage IV Anal CancerStage IV Basal Cell Carcinoma of the LipStage IV Borderline Ovarian Surface Epithelial-stromal TumorStage IV Breast CancerStage IV Colon CancerStage IV Endometrial CarcinomaStage IV Esophageal CancerStage IV Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage IV Gastric CancerStage IV Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage IV Lymphoepithelioma of the NasopharynxStage IV Lymphoepithelioma of the OropharynxStage IV Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage IV Mucoepidermoid Carcinoma of the Oral CavityStage IV Non-small Cell Lung CancerStage IV Ovarian Epithelial CancerStage IV Ovarian Germ Cell TumorStage IV Pancreatic CancerStage IV Prostate CancerStage IV Rectal CancerStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the HypopharynxStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IV Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IV Verrucous Carcinoma of the LarynxStage IV Verrucous Carcinoma of the Oral CavityStage IVA Cervical CancerStage IVB Cervical CancerTriple-negative Breast CancerUnresectable Extrahepatic Bile Duct CancerUnresectable Gallbladder CancerUnspecified Adult Solid Tumor, Protocol SpecificUntreated Metastatic Squamous Neck Cancer With Occult Primary
COMPLETED
Epirubicin, Carboplatin, and Capecitabine in Treating Patients With Unresectable Locally Advanced, Metastatic, or Recurrent Solid Tumor
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I/II trial to study the effectiveness of combining epirubicin, carboplatin, and capecitabine in treating patients who have unresectable locally advanced, metastatic, or recurrent solid tumor.