Treatment Trials

29 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Enhanced Outpatient Symptom Management to Reduce Acute Care Visits Due to Chemotherapy-Related Adverse Events
Description

This clinical trial studies if enhanced outpatient symptom management with telemedicine and remote monitoring can help reduce acute care visit due to chemotherapy-related adverse events. Receiving telemedicine and remote monitoring may help patients have better outcomes (such as fewer avoidable emergency room visits and hospitalizations, better quality of life, fewer symptoms, and fewer treatment delays) than patients who receive usual care.

Conditions
Clinical Stage IV Esophageal Adenocarcinoma AJCC v8Clinical Stage IV Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IV Gastric Cancer AJCC v8Clinical Stage IVA Esophageal Adenocarcinoma AJCC v8Clinical Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IVA Gastric Cancer AJCC v8Clinical Stage IVB Esophageal Adenocarcinoma AJCC v8Clinical Stage IVB Esophageal Squamous Cell Carcinoma AJCC v8Clinical Stage IVB Gastric Cancer AJCC v8Metastatic Colon CarcinomaMetastatic Esophageal CarcinomaMetastatic Gastric CarcinomaMetastatic Liver CarcinomaMetastatic Malignant Digestive System NeoplasmMetastatic Malignant Small Intestinal NeoplasmMetastatic Malignant Thoracic NeoplasmMetastatic Pancreatic CarcinomaMetastatic Rectal CarcinomaPathologic Stage IV Esophageal Adenocarcinoma AJCC v8Pathologic Stage IV Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IVA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IVB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVB Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IV Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IV Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Esophageal Squamous Cell Carcinoma AJCC v8Stage IV Colon Cancer AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Rectal Cancer AJCC v8Stage IV Small Intestinal, Esophageal, Colorectal, Mesenteric, and Peritoneal Gastrointestinal Stromal Tumor AJCC v8Stage IVA Colon Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVA Rectal Cancer AJCC v8Stage IVB Colon Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVB Rectal Cancer AJCC v8Stage IVC Colon Cancer AJCC v8Stage IVC Rectal Cancer AJCC v8
TERMINATED
Comparing Whole Brain Radiotherapy Using a Technique That Avoids the Hippocampus to Stereotactic Radiosurgery in Patients With Cancer That Has Spread to the Brain and Come Back in Other Areas of the Brain After Earlier Stereotactic Radiosurgery
Description

This phase III trial compares the effect of adding whole brain radiotherapy with hippocampal avoidance and memantine versus stereotactic radiosurgery alone in treating patients with cancer that has spread to the brain and come back in other areas of the brain after earlier stereotactic radiosurgery. Hippocampus avoidance during whole-brain radiation therapy decreases the amount of radiation that is delivered to the hippocampus, which is a brain structure that is important for memory. The medicine memantine is also often given with whole brain radiation therapy because it may decrease the risk of side effects of radiation on neurocognitive function (including thinking and memory). Stereotactic radiosurgery delivers a high dose of radiation only to the small areas of cancer in the brain and avoids the surrounding normal brain tissue. Adding whole brain radiotherapy with hippocampal avoidance and memantine may be effective in reducing the size of the cancer or keeping the cancer the same size when it has spread to the brain and/or come back in other areas of the brain compared to stereotactic radiosurgery.

RECRUITING
Radiation Therapy for the Treatment of Metastatic Gastrointestinal Cancers
Description

This phase II trial studies how well radiation therapy works for the treatment of gastrointestinal cancer that are spreading to other places in the body (metastatic). Radiation therapy uses high energy x-rays to kill cancer cells and shrink tumors. This trial is being done to determine if giving radiation therapy to patients who are being treated with immunotherapy and whose cancers are progressing (getting worse) can slow or stop the growth of their cancers. It may also help researchers determine if giving radiation therapy to one tumor can stimulate the immune system to attack other tumors in the body that are not targeted by the radiation therapy.

Conditions
Stage IV Esophageal AdenocarcinomaStage IV Esophageal Squamous Cell CarcinomaStage IV Gastric CancerStage IV Adenocarcinoma of the Gastroesophageal JunctionStage IVA Esophageal AdenocarcinomaStage IVA Esophageal Squamous Cell CarcinomaStage IVA Gastric CancerStage IVA Adenocarcinoma of the Gastroesophageal JunctionStage IVB Esophageal AdenocarcinomaStage IVB Esophageal Squamous Cell CarcinomaStage IVB Gastric CancerStage IVB Gastroesophageal Junction AdenocarcinomaMetastatic Anal Canal CarcinomaMetastatic Colorectal CarcinomaMetastatic Esophageal CarcinomaMetastatic Gastric CarcinomaMetastatic Gastroesophageal Junction AdenocarcinomaMetastatic Hepatocellular CarcinomaMetastatic Malignant Digestive System NeoplasmMetastatic Small Intestinal CarcinomaPancreatobiliary CarcinomaPathologic Stage IV Gastric Cancer AJCC v8Pathologic Stage IVA Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IVB Esophageal Adenocarcinoma AJCC v8Pathologic Stage IVB Esophageal Squamous Cell Carcinoma AJCC v8Pathologic Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IV Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IV Gastric Cancer AJCC v8Postneoadjuvant Therapy Stage IV Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Esophageal Squamous Cell Carcinoma AJCC v8Postneoadjuvant Therapy Stage IVA Gastroesophageal Junction Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Esophageal Adenocarcinoma AJCC v8Postneoadjuvant Therapy Stage IVB Esophageal Squamous Cell Carcinoma AJCC V8Postneoadjuvant Therapy Stage IVB Gastroesophageal Junction Adenocarcinoma AJCC v8Stage IV Anal Cancer AJCC v8Stage IV Colorectal Cancer AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IVA Colorectal Cancer AJCC v8Stage IVA Hepatocellular Carcinoma AJCC v8Stage IVB Colorectal Cancer AJCC v8Stage IVB Hepatocellular Carcinoma AJCC v8Stage IVC Colorectal Cancer AJCC v8
ACTIVE_NOT_RECRUITING
Liposomal Irinotecan, Fluorouracil, Leucovorin Calcium, and Rucaparib in Treating Patients With Metastatic Pancreatic, Colorectal, Gastroesophageal, or Biliary Cancer
Description

This phase I/II trial studies the side effects and best dose of liposomal irinotecan and rucaparib when given together with fluorouracil and leucovorin calcium and to see how well they work in treating patients with pancreatic, colorectal, gastroesophageal, or biliary cancer that has spread to other places in the body (metastatic). Chemotherapy drugs, such as liposomal irinotecan, fluorouracil, and leucovorin calcium, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. PARPs are proteins that help repair DNA mutations. PARP inhibitors, such as rucaparib, can keep PARP from working, so tumor cells can't repair themselves, and they may stop growing. Giving liposomal irinotecan and rucaparib together with fluorouracil and leucovorin calcium may work better in treating patients with pancreatic, colorectal, gastroesophageal, or biliary cancer.

COMPLETED
A Study of the Efficacy and Safety of Imatinib Mesylate in Patients With Unresectable or Metastatic Gastrointestinal Stromal Tumors Expressing C-kit Gene
Description

In the core study, participants with unresectable or metastatic gastrointestinal stromal tumors expressing c-kit were treated with either 400 mg or 600 mg imatinib mesylate for 3 years. The 10 year extension study allowed participants, who successfully completed the core study, to continue study treatment with imatinib mesylate provided they still benefited from treatment and did not demonstrate safety concerns as per the investigator's opinion.

ACTIVE_NOT_RECRUITING
Thermal Ablation and Spine Stereotactic Radiosurgery in Treating Patients with Spine Metastases At Risk for Compressing the Spinal Cord
Description

This phase II clinical trial studies how well thermal ablation and spine stereotactic radiosurgery work in treating patients with cancer that has spread to the spine (spine metastases) and is at risk for compressing the spinal cord. Thermal ablation uses a laser to heat tumor tissue and helps to shrink the tumor by destroying tumor cells. Stereotactic radiosurgery delivers a large dose of radiation in a short time precisely to the tumor, sparing healthy surrounding tissue. Combining thermal ablation with stereotactic radiosurgery may be a better way to control cancer that has spread to the spine and is at risk for compressing the spinal cord.

COMPLETED
Pro-Active Genetic Testing in Patients With Solid Tumors, Inherit Study
Description

This phase I trial collects blood samples to investigate the prevalence of changes in genes (genetic mutations) in solid tumor patient populations seeking care at Mayo Clinic Embedded Cancer Center at St. Vincent's Riverside. This may help doctors better understand and/or treat others who have genetic mutations.

COMPLETED
Genetic Analysis-Guided Dosing of FOLFIRABRAX in Treating Patients With Advanced Gastrointestinal Cancer
Description

This phase I/II trial studies the side effects of genetic analysis-guided dosing of paclitaxel albumin-stabilized nanoparticle formulation, fluorouracil, leucovorin calcium, and irinotecan hydrochloride (FOLFIRABRAX) in treating patients with gastrointestinal cancer that has spread to other parts of the body and usually cannot be cured or controlled with treatment. Drugs used in chemotherapy, such as paclitaxel albumin-stabilized nanoparticle formulation, fluorouracil, leucovorin calcium, and irinotecan hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Genetic analysis may help doctors determine what dose of irinotecan hydrochloride patients can tolerate.

COMPLETED
Nivolumab With or Without Ipilimumab in Treating Patients With Metastatic Sarcoma That Cannot Be Removed by Surgery
Description

This randomized phase II trial studies how well nivolumab with or without ipilimumab works in treating patients with sarcoma that has spread from the primary site to other parts of the body (metastatic) or cannot be removed by surgery (unresectable). Immunotherapy with monoclonal antibodies, such as nivolumab and ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. It is not yet known whether nivolumab works better with or without ipilimumab in treating patients with metastatic or unresectable sarcoma.

RECRUITING
Surgical Debulking Prior to Peptide Receptor Radionuclide Therapy in Well Differentiated Gastroenteropancreatic Neuroendocrine Tumors
Description

This phase IV trial evaluates how well giving standard of care (SOC) peptide receptor radionuclide therapy (PRRT) after SOC surgical removal of as much tumor as possible (debulking surgery) works in treating patients with grade 1 or 2, somatostatin receptor (SSTR) positive, gastroenteropancreatic neuroendocrine tumors (GEP-NETs) that have spread from where they first started (primary site) to the liver (hepatic metastasis). Lutetium Lu 177 dotatate is a radioactive drug that uses targeted radiation to kill tumor cells. Lutetium Lu 177 dotatate includes a radioactive form (an isotope) of the element called lutetium. This radioactive isotope (Lu-177) is attached to a molecule called dotatate. On the surface of GEP-NET tumor cells, a receptor called a somatostatin receptor binds to dotatate. When this binding occurs, the lutetium Lu 177 dotatate drug then enters somatostatin receptor-positive tumor cells, and radiation emitted by Lu-177 helps kill the cells. Giving lutetium Lu 177 dotatate after surgical debulking may better treat patients with grade 1/2 GEP-NETs

COMPLETED
Ipilimumab and Imatinib Mesylate in Advanced Cancer
Description

This phase I trial studies the side effects and best dose of ipilimumab and imatinib mesylate in treating patients with solid tumors that have spread to other places in the body or cannot be removed by surgery. Immunotherapy with monoclonal antibodies, such as ipilimumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Imatinib mesylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ipilimumab and imatinib mesylate may work better in treating patients with solid tumors.

RECRUITING
Testing Longer Duration Radiation Therapy Versus the Usual Radiation Therapy in Patients With Cancer That Has Spread to the Brain
Description

This phase III trial compares the effectiveness of fractionated stereotactic radiosurgery (FSRS) to usual care stereotactic radiosurgery (SRS) in treating patients with cancer that has spread from where it first started to the brain. Radiation therapy uses high energy x-rays to kill tumor cells and shrink tumors. FSRS delivers a high dose of radiation to the tumor over 3 treatments. SRS is a type of external radiation therapy that uses special equipment to position the patient and precisely give a single large dose of radiation to a tumor. FSRS may be more effective compared to SRS in treating patients with cancer that has spread to the brain.

ACTIVE_NOT_RECRUITING
Bevacizumab and Temsirolimus Alone or in Combination with Valproic Acid or Cetuximab in Treating Patients with Advanced or Metastatic Malignancy or Other Benign Disease
Description

This phase I trial studies the side effects and best dose of bevacizumab and temsirolimus alone or in combination with valproic acid or cetuximab in treating patients with a malignancy that has spread to other places in the body or other disease that is not cancerous. Immunotherapy with bevacizumab and cetuximab, may induce changes in body's immune system and may interfere with the ability of tumor cells to grow and spread. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as valproic acid, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. It is not yet known whether bevacizumab and temsirolimus work better when given alone or with valproic acid or cetuximab in treating patients with a malignancy or other disease that is not cancerous.

COMPLETED
Vaccine Therapy in Treating Patients With Metastatic Cancer
Description

RATIONALE: Vaccines made from a peptide may make the body build an immune response and kill tumor cells. PURPOSE: Randomized phase I trial to study the effectiveness of vaccine therapy in treating patients who have metastatic cancer that has not responded to previous therapy.

COMPLETED
Magnetic-Targeted Doxorubicin in Treating Patients With Cancer Metastatic to the Liver
Description

MTC-DOX is Doxorubicin or DOX, a chemotherapy drug, that is adsorbed, or made to "stick", to magnetic beads (MTCs). MTCs are tiny, microscopic particles of iron and carbon. When DOX is added to MTCs, DOX attaches to the carbon part of the MTCs. MTC-DOX is directed to and deposited in the area of a tumor, where it is thought that it then "leaks" through the blood vessel walls. Once in the surrounding tissues, it is thought that Doxorubicin becomes "free from" the magnetic beads and will then be able to act against the tumor cells. The iron component of the particle has magnetic properties, making it possible to direct MTC-DOX to specific tumor sites in the liver by placing a magnet on the body surface. It is hoped that MTC-DOX used with the magnet may target the chemotherapy drug directly to liver tumors and provide a treatment to patients with cancers that have spread to the liver.

NOT_YET_RECRUITING
Temozolomide and Survivin Long Peptide Vaccine (SurVaxM) for the Treatment of Patients With Progressing Metastatic Neuroendocrine Tumors
Description

This phase II trial compares the safety and effect of temozolomide combined with survivin long peptide vaccine (SurVaxM) to temozolomide alone in patients with neuroendocrine tumors (NET) that has spread from where it first started (primary site) to other places in the body (metastatic) and is growing, spreading or getting worse (progressing). Temozolomide is in a class of medications called alkylating agents. It works by damaging the cell's deoxyribonucleic acid and may kill tumor cells and slow down or stop tumor growth. Survivin, a protein, is expressed in 50% of patients that have neuroendocrine tumors and, is associated with poor outcomes. SVN53-67/M57-KLH peptide vaccine (SurVaxM) is a vaccine that has been shown to produce an immune system response against cancer cells that express a survivin and may block the growth of new tumor cells. Giving temozolomide with SurVaxM may kill more tumor cells in patients with progressing metastatic neuroendocrine tumors.

COMPLETED
Temsirolimus and Vinorelbine Ditartrate in Treating Patients With Unresectable or Metastatic Solid Tumors
Description

RATIONALE: Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as vinorelbine ditartrate, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus together with vinorelbine ditartrate may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of giving temsirolimus and vinorelbine ditartrate together in treating patients with unresectable or metastatic solid tumors.

COMPLETED
Vismodegib and Gamma-Secretase/Notch Signalling Pathway Inhibitor RO4929097 in Treating Patients With Advanced or Metastatic Sarcoma
Description

This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.

COMPLETED
Phase II Study of Sunitinib Malate for Metastatic and/or Surgically Unresectable Soft Tissue Sarcoma
Description

This is an open label single site Phase II clinical trial to identify a potentially promising therapy dose for Sunitinib malate. The study drug will be taken orally once daily on days 1 through 28 of each 42 day cycle. Treatment will be continued until there is either disease progression or cumulative/acute toxicity. All patients with unresectable or metastatic soft tissue sarcoma (STS): leiomyosarcoma, liposarcoma, fibrosarcoma, and malignant fibrous histiocytoma (MFH) seen at the Moffitt Cancer Center will be screened for eligibility to be enrolled in the study.

COMPLETED
Oxaliplatin With Or Without Floxuridine and Leucovorin in Treating Patients With Metastatic Cancer of the Peritoneum
Description

RATIONALE: Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining more than one drug may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of oxaliplatin with or without floxuridine and leucovorin in treating patients who have metastatic cancer of the peritoneum.

Conditions
COMPLETED
Trastuzumab Plus R115777 in Treating Patients With Advanced or Metastatic Cancer
Description

Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.

Conditions
COMPLETED
Temsirolimus and Bevacizumab in Treating Patients With Advanced Endometrial, Ovarian, Liver, Carcinoid, or Islet Cell Cancer
Description

This phase II trial studies how well temsirolimus and bevacizumab work in treating patients with advanced endometrial, ovarian, liver, carcinoid, or islet cell cancer. Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Monoclonal antibodies, such as bevacizumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Bevacizumab may also stop the growth of cancer by blocking blood flow to the tumor. Giving temsirolimus together with bevacizumab may kill more tumor cells.

COMPLETED
Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu
Description

Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy

Conditions
Advanced Adult Primary Liver CancerAnaplastic Thyroid CancerBone MetastasesCarcinoma of the AppendixDistal Urethral CancerFallopian Tube CancerGastrinomaGlucagonomaInflammatory Breast CancerInsulinomaLiver MetastasesLocalized Unresectable Adult Primary Liver CancerLung MetastasesMale Breast CancerMalignant Pericardial EffusionMalignant Pleural EffusionMetastatic Gastrointestinal Carcinoid TumorMetastatic Parathyroid CancerMetastatic Transitional Cell Cancer of the Renal Pelvis and UreterNewly Diagnosed Carcinoma of Unknown PrimaryOccult Non-small Cell Lung CancerPancreatic Polypeptide TumorPrimary Peritoneal Cavity CancerProximal Urethral CancerPulmonary Carcinoid TumorRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Adrenocortical CarcinomaRecurrent Adult Primary Liver CancerRecurrent Anal CancerRecurrent Bladder CancerRecurrent Breast CancerRecurrent Carcinoma of Unknown PrimaryRecurrent Cervical CancerRecurrent Colon CancerRecurrent Endometrial CarcinomaRecurrent Esophageal CancerRecurrent Extrahepatic Bile Duct CancerRecurrent Gallbladder CancerRecurrent Gastric CancerRecurrent Gastrointestinal Carcinoid TumorRecurrent Islet Cell CarcinomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Non-small Cell Lung CancerRecurrent Ovarian Epithelial CancerRecurrent Pancreatic CancerRecurrent Parathyroid CancerRecurrent Prostate CancerRecurrent Rectal CancerRecurrent Renal Cell CancerRecurrent Salivary Gland CancerRecurrent Small Intestine CancerRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Thyroid CancerRecurrent Transitional Cell Cancer of the Renal Pelvis and UreterRecurrent Urethral CancerRecurrent Vaginal CancerRecurrent Vulvar CancerSkin MetastasesSmall Intestine AdenocarcinomaSomatostatinomaStage III Adenoid Cystic Carcinoma of the Oral CavityStage III Adrenocortical CarcinomaStage III Bladder CancerStage III Cervical CancerStage III Colon CancerStage III Endometrial CarcinomaStage III Esophageal CancerStage III Follicular Thyroid CancerStage III Gastric CancerStage III Malignant Testicular Germ Cell TumorStage III Mucoepidermoid Carcinoma of the Oral CavityStage III Ovarian Epithelial CancerStage III Pancreatic CancerStage III Papillary Thyroid CancerStage III Prostate CancerStage III Rectal CancerStage III Renal Cell CancerStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Vaginal CancerStage III Vulvar CancerStage IIIA Anal CancerStage IIIA Breast CancerStage IIIA Non-small Cell Lung CancerStage IIIB Anal CancerStage IIIB Breast CancerStage IIIB Non-small Cell Lung CancerStage IV Adenoid Cystic Carcinoma of the Oral CavityStage IV Adrenocortical CarcinomaStage IV Anal CancerStage IV Bladder CancerStage IV Breast CancerStage IV Colon CancerStage IV Endometrial CarcinomaStage IV Esophageal CancerStage IV Follicular Thyroid CancerStage IV Gastric CancerStage IV Mucoepidermoid Carcinoma of the Oral CavityStage IV Non-small Cell Lung CancerStage IV Ovarian Epithelial CancerStage IV Pancreatic CancerStage IV Papillary Thyroid CancerStage IV Prostate CancerStage IV Rectal CancerStage IV Renal Cell CancerStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IVA Cervical CancerStage IVA Vaginal CancerStage IVB Cervical CancerStage IVB Vaginal CancerStage IVB Vulvar CancerThyroid Gland Medullary CarcinomaUnresectable Extrahepatic Bile Duct CancerUnresectable Gallbladder CancerUrethral Cancer Associated With Invasive Bladder CancerWDHA Syndrome
COMPLETED
Early Intervention vs. Standard Palliative Care in Improving End-of-Life Care in Advanced Cancer Patients
Description

RATIONALE: Palliative care may help patients with advanced cancer live more comfortably. PURPOSE: This randomized clinical trial is studying an early intervention palliative care program to see how well it works compared to a standard care program in improving end-of-life care in patients with advanced lung , gastrointestinal, genitourinary, or breast cancer.

Conditions
COMPLETED
PV701 in Treating Patients With Advanced or Recurrent Peritoneal Cancer
Description

RATIONALE: PV701 may be able to kill tumor cells while leaving normal cells undamaged. PURPOSE: Phase I trial to study the effectiveness of PV701 in treating patients who have advanced or recurrent ovarian epithelial, fallopian tube, primary peritoneal, colorectal, or other cancer found primarily within the peritoneal cavity.

Conditions
COMPLETED
Interleukin-12 in Treating Patients With Cancer in the Abdomen
Description

RATIONALE: Interleukin-12 may kill tumor cells by stimulating a person's white blood cells to kill cancer cells. PURPOSE: Phase I trial to study the effectiveness of interleukin-12 in treating patients with cancer in the abdomen.

COMPLETED
Lithium Carbonate in Treating Patients With Acute Intestinal Graft-Versus-Host-Disease (GVHD) After Donor Stem Cell Transplant
Description

RATIONALE: Lithium carbonate may be an effective treatment for intestinal graft-versus-host disease caused by a donor stem cell transplant. PURPOSE: This clinical trial is studying lithium carbonate in treating patients with acute intestinal graft-versus-host-disease after donor stem cell transplant.

Conditions
Accelerated Phase Chronic Myelogenous LeukemiaAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With 11q23 (MLL) AbnormalitiesAdult Acute Myeloid Leukemia With Inv(16)(p13;q22)Adult Acute Myeloid Leukemia With t(15;17)(q22;q12)Adult Acute Myeloid Leukemia With t(16;16)(p13;q22)Adult Acute Myeloid Leukemia With t(8;21)(q22;q22)Atypical Chronic Myeloid Leukemia, Breakpoint Cluster Region-abl Translocation (BCR-ABL) NegativeBlastic Phase Chronic Myelogenous LeukemiaChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Chronic Myelogenous LeukemiaChildhood Myelodysplastic SyndromesChronic Eosinophilic LeukemiaChronic Myelomonocytic LeukemiaChronic Neutrophilic LeukemiaChronic Phase Chronic Myelogenous Leukemiade Novo Myelodysplastic SyndromesDisseminated NeuroblastomaExtranodal Marginal Zone B-cell Lymphoma of Mucosa-associated Lymphoid TissueGastrointestinal ComplicationsJuvenile Myelomonocytic LeukemiaMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiableNodal Marginal Zone B-cell LymphomaNoncontiguous Stage II Adult Burkitt LymphomaNoncontiguous Stage II Adult Diffuse Large Cell LymphomaNoncontiguous Stage II Adult Diffuse Mixed Cell LymphomaNoncontiguous Stage II Adult Diffuse Small Cleaved Cell LymphomaNoncontiguous Stage II Adult Immunoblastic Large Cell LymphomaNoncontiguous Stage II Adult Lymphoblastic LymphomaNoncontiguous Stage II Grade 1 Follicular LymphomaNoncontiguous Stage II Grade 2 Follicular LymphomaNoncontiguous Stage II Grade 3 Follicular LymphomaNoncontiguous Stage II Mantle Cell LymphomaNoncontiguous Stage II Marginal Zone LymphomaNoncontiguous Stage II Small Lymphocytic LymphomaPoor Prognosis Metastatic Gestational Trophoblastic TumorPreviously Treated Childhood RhabdomyosarcomaPrimary MyelofibrosisRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic Large Cell LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood RhabdomyosarcomaRecurrent Childhood Small Noncleaved Cell LymphomaRecurrent Cutaneous T-cell Non-Hodgkin LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Mycosis Fungoides/Sezary SyndromeRecurrent NeuroblastomaRecurrent Ovarian Epithelial CancerRecurrent Ovarian Germ Cell TumorRecurrent Small Lymphocytic LymphomaRecurrent Wilms Tumor and Other Childhood Kidney TumorsRecurrent/Refractory Childhood Hodgkin LymphomaRefractory Chronic Lymphocytic LeukemiaRefractory Hairy Cell LeukemiaRelapsing Chronic Myelogenous LeukemiaSecondary Acute Myeloid LeukemiaSecondary Myelodysplastic SyndromesSplenic Marginal Zone LymphomaStage I Multiple MyelomaStage II Multiple MyelomaStage II Ovarian Epithelial CancerStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Hodgkin LymphomaStage III Adult Immunoblastic Large Cell LymphomaStage III Adult Lymphoblastic LymphomaStage III Chronic Lymphocytic LeukemiaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Malignant Testicular Germ Cell TumorStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Multiple MyelomaStage III Ovarian Epithelial CancerStage III Small Lymphocytic LymphomaStage IIIA Breast CancerStage IIIB Breast CancerStage IIIC Breast CancerStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Hodgkin LymphomaStage IV Adult Immunoblastic Large Cell LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Breast CancerStage IV Chronic Lymphocytic LeukemiaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Ovarian Epithelial CancerStage IV Small Lymphocytic Lymphoma
ACTIVE_NOT_RECRUITING
Pembrolizumab with Intratumoral Injection of Clostridium Novyi-NT
Description

Some tumors are difficult to treat with chemotherapy or radiation. One of the reasons is that areas of the tumor do not have many blood vessels, which makes it difficult for drugs to reach those areas. One way that researchers have recently tried to overcome this problem is by injecting special kinds of bacteria into the tumors. These bacteria have been genetically changed to remove the chemicals that are poisonous to humans, but are still able to cause tumor cells to break down and die. The idea is that these bacteria may be able to assist chemotherapy drugs in fighting cancer. The goal of this clinical research study is to find the highest tolerable dose of one of these bacterial therapies (Clostridium novyi-NT spores) that can be given in combination with pembrolizumab to patients with advanced solid tumors. The safety of this drug will also be studied, as well as whether it can help to control the disease. This is an investigational study. Clostridium novyi-NT is not FDA approved or commercially available. It is currently being used for research purposes only. Pembrolizumab is FDA approved for the treatment of melanoma and different types of head and neck and non-small cell lung cancers. It is investigational to use these drugs in combination with each other in various types of advanced cancers. The study doctor can describe how the study drugs are designed to work. Up to 18 participants will be enrolled in this study. All will take part at MD Anderson.

COMPLETED
MS-275 in Treating Patients With Advanced Solid Tumors or Lymphoma
Description

RATIONALE: MS-275 may stop the growth of cancer cells by blocking the enzymes necessary for their growth. PURPOSE: This phase I trial is studying the side effects and best dose of MS-275 in treating patients with advanced solid tumors or lymphoma.

Conditions