14 Clinical Trials for Various Conditions
RATIONALE: Erlotinib may stop the growth of tumor cells by blocking the enzymes necessary for tumor cell growth. PURPOSE: This phase II trial is studying how well erlotinib works in treating patients with unresectable or metastatic malignant peripheral nerve sheath tumor.
This phase I trial studies the side effects and the best dose of a vaccine therapy in treating patients with malignant peripheral nerve sheath tumor that cannot be removed by surgery (unresectable) or has come back after a period of improvement (recurrent). Vaccines made from a gene-modified virus may kill tumor cells expressing a gene called neurofibromin 1 (NF1) without affecting surrounding normal cells and may also help the body build an effective immune response to kill tumor cells.
This phase Ib trial studies the side effects and best dose of ribociclib when giving together with doxorubicin hydrochloride in treating patients with soft tissue sarcomas that has spread to other places or that cannot be removed by surgery (advanced). Ribociclib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving ribociclib and doxorubicin hydrochloride may work better in treating patients with soft tissue sarcoma.
This phase I/II trial studies the side effects and best dose of sapanisertib and to see how well it works compared to pazopanib hydrochloride in treating patients with sarcoma that is too large to be removed (locally advanced) or has spread to other areas of the body (metastatic). Sapanisertib and pazopanib hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This phase 2, open label, single arm study will investigate the use of tazemetostat in patients with recurrent/refractory and/or metastatic malignant peripheral nerve sheath tumors.
Background: Metastasis is the spread of cancer from one organ to a nonadjacent organ. It causes 90% of cancer deaths. No treatment specifically prevents or reduces metastasis. Researchers hope a new drug can help. It stops cancer cells from growing and spreading further and possibly shrink cancer lesions in distant organs. Objective: To find a safe dose of metarrestin and to see if this dose shrinks tumors. Eligibility: Adults age 18 and older with pancreatic cancer, breast cancer, or a solid tumor that has not been cured by standard therapies. Also, children age 12-17 with a solid tumor (other than a muscle tumor) with no standard therapy options. Design: Participants will be screened with: * blood tests * physical exam * documentation of disease confirmation or tumor biopsy * electrocardiogram to evaluate the heart * review of their medicines and their ability to do their normal activities Participants will take metarrestin by mouth until they cannot tolerate it or stop to benefit from it. They will keep a medicine diary. Participants will visit the Clinical Center. During the first month there are two brief hospital stays required with visits weekly or every other week thereafter. They will repeat some of the screening tests. They will fill out questionnaires. They will have tests of their cognitive function. They will have an electroencephalogram to record brain activity. They will have a computed tomography (CT) scan or magnetic resonance imaging (MRI). A CT is a series of X-rays of the body. An MRI uses magnets and radio waves to take pictures of the body. Adult participants may have tumor biopsies. Participants will have a follow-up visit 30 days after treatment ends. Then they will have follow-up phone calls or emails every 6 months for the rest of their life or until the study ends.
This study aims to assess the safety, tolerability, pharmacokinetics, and preliminary efficacy of APG-115, an MDM2 inhibitor, either alone or in combination with pembrolizumab, a programmed cell death protein-1 (PD-1) inhibitor, in patients with metastatic melanomas or advanced solid tumors. Our hypothesis is that restoration of the immune response concomitant to inhibition of the MDM2 pathway (which restores p53 functions) may promote cancer cell death, leading to effective anticancer therapy.
The purpose of this research study is to look at whether giving a drug called dexrazoxane with standard of care doxorubicin affects the progression of the disease. Dexrazoxane is often given at the same time as doxorubicin to help reduce the incidence and severity of disease of the heart muscle (which can be caused by doxorubicin). In January 2019 Eli Lilly and Company reported that the results of the Phase 3 study of olaratumab (Lartruvo), in combination with doxorubicin in patients with advanced or metastatic soft tissue sarcoma, did not confirm the clinical benefit of olaratumab in combination with doxorubicin as compared to doxorubicin alone. Therefore olaratumab is being removed from the front line standard of care regimen. Amendment #9 was made to the protocol to reflect these changes to the standard of care treatment.
This phase II trial studies how well alisertib works in treating patients with sarcoma that has spread to other places in the body and usually cannot be cured or controlled with treatment (advanced) or has spread to other places in the body (metastatic). Alisertib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This randomized phase I/II clinical trial is studying the side effects and best dose of gamma-secretase/notch signalling pathway inhibitor RO4929097 when given together with vismodegib and to see how well they work in treating patients with advanced or metastatic sarcoma. Vismodegib may slow the growth of tumor cells. Gamma-secretase/notch signalling pathway inhibitor RO4929097 may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving vismodegib together with gamma-secretase/notch signalling pathway inhibitor RO4929097 may be an effective treatment for sarcoma.
This phase I trial is studying the side effects and best dose of cixutumumab given together with doxorubicin hydrochloride and to see how well they work in treating patients with unresectable, locally advanced, or metastatic soft tissue sarcoma. Monoclonal antibodies, such as cixutumumab, can block tumor growth in different ways. Some block the ability of tumor cells to grow and spread. Others find tumor cells and help kill them or carry tumor-killing substances to them. Drugs used in chemotherapy, such as doxorubicin hydrochloride, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving monoclonal antibody cixutumumab together with doxorubicin hydrochloride may kill more tumor cells.
RATIONALE: Drugs used in chemotherapy, such as doxorubicin, ifosfamide, and etoposide, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill tumor cells. Giving combination chemotherapy with or without radiation therapy before surgery may make the tumor smaller and reduce the amount of normal tissue that needs to be removed. Giving combination chemotherapy after surgery may kill any tumor cells that remain after surgery. PURPOSE: This phase II trial is studying how well combination chemotherapy works in treating patients with stage III or stage IV malignant peripheral nerve sheath tumors.
This phase II trial studies how well glutaminase inhibitor telaglenastat hydrochloride (CB-839 HCl) works in treating patients with specific genetic mutations and solid tumors or malignant peripheral nerve sheath tumors that have spread to other places in the body (metastatic) or cannot be removed by surgery (unresectable). Glutaminase converts an amino acid (building block of proteins) called glutamine to glutamate, which can support several cellular pathways. Telaglenastat hydrochloride works by blocking glutamine activity needed for the growth of cells. When this activity is blocked, the growth of cancer cells may stop and the cancer cells may then die. Cancer is caused by changes (mutations) to genes that control the way cells function and uncontrolled cell growth may result in tumor formation. Specific genetic mutations studied in this clinical trial are NF1 mutation for malignant peripheral nerve sheath tumors, and NF1, KEAP1/NRF2, or STK11/LKB1 mutation for other solid tumors. Telaglenastat hydrochloride may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.
This is a Phase I, open-label, dose-escalation trial of JX-594 (Pexa-Vec) in pediatric patients with advanced/metastatic, unresectable solid tumors refractory to standard therapy and/or the patient does not tolerate standard therapies. Tumors are likely to include neuroblastoma, lymphoma, Wilms' tumor, rhabdomyosarcoma, Ewing's sarcoma, osteosarcoma, non-rhabdomyosarcoma soft tissue sarcomas, and malignant peripheral nerve sheath tumors. Benign tumors are excluded. These tumor types were selected because evidence of biological activity was observed in cancer cells lines and ex vivo infected primary human tissue samples, specifically pediatric cancer types such as sarcomas and neuroblastomas.