Treatment Trials

32 Clinical Trials for Various Conditions

Focus your search

ACTIVE_NOT_RECRUITING
Testing the Combination of the Anti-cancer Drugs XL184 (Cabozantinib) and Nivolumab in Patients With Advanced Cancer and HIV
Description

This phase I trial investigates the side effects of cabozantinib and nivolumab in treating patients with cancer that may have spread from where it first started to nearby tissue, lymph nodes, or distant parts of the body (advanced) and who are undergoing treatment for human immunodeficiency virus (HIV). Cabozantinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Immunotherapy with monoclonal antibodies, such as nivolumab, may help the body's immune system attack the cancer, and may interfere with the ability of tumor cells to grow and spread. Giving cabozantinib and nivolumab may shrink or stabilize cancer in patients undergoing treatment for HIV.

Conditions
Advanced Differentiated Thyroid Gland CarcinomaAdvanced Head and Neck CarcinomaAdvanced Hepatocellular CarcinomaAdvanced Kaposi SarcomaAdvanced Lung Non-Small Cell CarcinomaAdvanced Lung Small Cell CarcinomaAdvanced Malignant Solid NeoplasmAdvanced MelanomaAdvanced Ovarian CarcinomaAdvanced Prostate CarcinomaAdvanced Renal Cell CarcinomaAdvanced Thyroid Gland Medullary CarcinomaAdvanced Triple-Negative Breast CarcinomaAdvanced Urothelial CarcinomaAnatomic Stage III Breast Cancer AJCC v8Anatomic Stage IV Breast Cancer AJCC v8Castration-Resistant Prostate CarcinomaClinical Stage III Cutaneous Melanoma AJCC v8Clinical Stage IV Cutaneous Melanoma AJCC v8HIV InfectionMetastatic Differentiated Thyroid Gland CarcinomaMetastatic Head and Neck CarcinomaMetastatic Hepatocellular CarcinomaMetastatic Kaposi SarcomaMetastatic Lung Non-Small Cell CarcinomaMetastatic Lung Small Cell CarcinomaMetastatic Malignant Solid NeoplasmMetastatic MelanomaMetastatic Ovarian CarcinomaMetastatic Prostate CarcinomaMetastatic Renal Cell CarcinomaMetastatic Thyroid Gland Medullary CarcinomaMetastatic Triple-Negative Breast CarcinomaMetastatic Urothelial CarcinomaRecurrent Differentiated Thyroid Gland CarcinomaRecurrent Head and Neck CarcinomaRecurrent Hepatocellular CarcinomaRecurrent Kaposi SarcomaRecurrent Lung Non-Small Cell CarcinomaRecurrent Lung Small Cell CarcinomaRecurrent Malignant Solid NeoplasmRecurrent MelanomaRecurrent Ovarian CarcinomaRecurrent Prostate CarcinomaRecurrent Renal Cell CarcinomaRecurrent Thyroid Gland Medullary CarcinomaRecurrent Triple-Negative Breast CarcinomaRecurrent Urothelial CarcinomaRefractory Differentiated Thyroid Gland CarcinomaStage III Differentiated Thyroid Gland Carcinoma AJCC v8Stage III Hepatocellular Carcinoma AJCC v8Stage III Lung Cancer AJCC v8Stage III Ovarian Cancer AJCC v8Stage III Prostate Cancer AJCC v8Stage III Renal Cell Cancer AJCC v8Stage III Thyroid Gland Medullary Carcinoma AJCC v8Stage IV Differentiated Thyroid Gland Carcinoma AJCC v8Stage IV Hepatocellular Carcinoma AJCC v8Stage IV Lung Cancer AJCC v8Stage IV Ovarian Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Stage IV Renal Cell Cancer AJCC v8Stage IV Thyroid Gland Medullary Carcinoma AJCC v8
ACTIVE_NOT_RECRUITING
Cancer and Blood Pressure Management, CARISMA Study
Description

This phase II trial studies how well intensive blood pressure management works in decreasing systolic blood pressure in patients with kidney or thyroid cancer that has spread to other places in the body (metastatic) who are starting anti-angiogenic tyrosine kinase inhibitor cancer therapy. This study is being done to find out if a systolic blood pressure to a target of less than 120 mmHg (intensive systolic blood pressure management) can be achieved, well tolerated, and beneficial as compared to the usual approach to a target of less than 140 mmHg while taking an anti-angiogenic tyrosine kinase inhibitor. This study may help doctors understand the best way to control blood pressure in kidney or thyroid cancer patients taking anti-angiogenic tyrosine kinase inhibitor.

TERMINATED
Imatinib in Combination With Dacarbazine and Capecitabine in Medullary Thyroid Carcinoma
Description

Objectives: Primary objectives: To determine the maximum tolerated doses (MTD) for the combination of imatinib mesylate, capecitabine, and dacarbazine in patients with solid tumors. To determine the overall tumor response rate to imatinib mesylate in combination with capecitabine and dacarbazine as first line and second line therapy in advanced metastatic medullary thyroid carcinoma. To determine the tolerability (toxicity) of this regimen. Secondary objectives: To determine the median overall survival (OS) and time to progression (TTP) for patients treated with this combination.

COMPLETED
Sunitinib Malate in Treating Patients With Iodine-Refractory Recurrent or Metastatic Thyroid Cancer
Description

This phase II trial studies how well giving sunitinib malate works in treating patients with iodine-refractory recurrent or metastatic thyroid cancer. Sunitinib malate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth or by blocking blood flow to the tumor

COMPLETED
Tanespimycin in Treating Patients With Inoperable Locoregionally Advanced or Metastatic Thyroid Cancer
Description

This phase II trial is studying how well tanespimycin works in treating patients with inoperable locoregionally advanced or metastatic thyroid cancer. Drugs used in chemotherapy, such as tanespimycin, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing.

COMPLETED
Gefitinib in Treating Patients With Locally Advanced or Metastatic Thyroid Cancer That Did Not Respond to Iodine Therapy
Description

RATIONALE: Gefitinib may stop the growth of tumor cells by blocking the enzymes necessary for their growth. PURPOSE: Phase II trial to study the effectiveness of gefitinib in treating patients who have locally advanced or metastatic thyroid cancer that did not respond to iodine therapy.

WITHDRAWN
Radioactive Drug (177Lu-DOTATATE) for the Treatment of Locally Advanced, Metastatic, or Unresectable Rare Endocrine Cancers
Description

This phase II trial studies how well 177Lu-DOTATATE works in treating patients with rare endocrine cancers that have spread from where they started to nearby tissue or lymph nodes (locally advanced), spread to other places in the body (metastatic), or cannot be removed by surgery (unresectable). Radioactive drugs, such as 177Lu-DOTATATE, may carry radiation directly to cancer cells and not harm normal cells. 177Lu-DOTATATE may help to control endocrine cancers compared to standard treatment.

COMPLETED
Effect of Cabozantinib S-Malate or Lenvatinib Mesylate on Weight and Body Composition in Patients With Metastatic Endocrine Cancer
Description

The goal of this clinical research study is to learn about possible weight, muscle, and/or fat loss in patients receiving cabozantinib or lenvatinib.

COMPLETED
Temsirolimus and Vinorelbine Ditartrate in Treating Patients With Unresectable or Metastatic Solid Tumors
Description

RATIONALE: Temsirolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as vinorelbine ditartrate, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Giving temsirolimus together with vinorelbine ditartrate may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of giving temsirolimus and vinorelbine ditartrate together in treating patients with unresectable or metastatic solid tumors.

TERMINATED
Internal Radiation Therapy in Treating Patients With Liver Metastases From Neuroendocrine Tumors
Description

RATIONALE: Specialized radiation therapy that delivers a high dose of radiation directly to the tumor may kill more tumor cells and cause less damage to normal tissue. PURPOSE: This phase II trial is studying how well internal radiation therapy works in treating patients with liver metastases from neuroendocrine tumors.

COMPLETED
Sorafenib Tosylate in Treating Patients With Metastatic, Locally Advanced, or Recurrent Medullary Thyroid Cancer
Description

This phase II trial studies how well sorafenib tosylate works in treating patients with medullary thyroid cancer that has spread to other parts of the body (metastatic), spread to the tissue surrounding the thyroid (locally advanced), or has returned after a period of improvement (recurrent). Sorafenib tosylate may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor.

COMPLETED
Suberoylanilide Hydroxamic Acid in Treating Patients With Metastatic and/or Locally Advanced or Locally Recurrent Thyroid Cancer
Description

This phase II trial is studying how well suberoylanilide hydroxamic acid works in treating patients with metastatic and/or locally advanced or locally recurrent thyroid cancer. Drugs used in chemotherapy, such as suberoylanilide hydroxamic acid, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. Suberoylanilide hydroxamic acid may also stop the growth of tumor cells by blocking some of the enzymes needed for cell growth.

TERMINATED
Irinotecan in Treating Patients With Metastatic or Inoperable Thyroid Cancer
Description

RATIONALE: Drugs used in chemotherapy, such as irinotecan, work in different ways to stop the growth of tumor cells, either by killing the cells or by stopping them from dividing. PURPOSE: This phase II trial is studying how well irinotecan works in treating patients with metastatic or inoperable thyroid cancer.

COMPLETED
Vaccine Therapy With or Without Sargramostim in Treating Patients With Advanced or Metastatic Cancer
Description

Phase I trial to study the effectiveness of vaccine therapy with or without sargramostim in treating patients who have advanced or metastatic cancer. Vaccines may make the body build an immune response to kill tumor cells. Colony-stimulating factors such as sargramostim may increase the number of immune cells found in bone marrow or peripheral blood. Combining vaccine therapy with sargramostim may make tumor cells more sensitive to the vaccine and may kill more tumor cells

COMPLETED
Vaccine Therapy in Treating Patients With Advanced or Metastatic Cancer
Description

RATIONALE: Vaccines made from a person's white blood cells that have been treated in the laboratory may make the body build an immune response to kill tumor cells. PURPOSE: Phase I trial to study the effectiveness of vaccine therapy in treating patients who have advanced or metastatic cancer.

COMPLETED
Vaccine Therapy Plus Biological Therapy in Treating Adults With Metastatic Solid Tumors
Description

RATIONALE: Vaccines made from a peptide may make the body build an immune response to kill tumor cells. Combining vaccine therapy with interleukin-2 and/or sargramostim may be a more effective treatment for solid tumors. PURPOSE: Phase II trial to study the effectiveness of vaccine therapy plus interleukin-2 and/or sargramostim in treating adults who have metastatic solid tumors.

COMPLETED
Trastuzumab Plus R115777 in Treating Patients With Advanced or Metastatic Cancer
Description

Phase I trial to study the effectiveness of trastuzumab plus R115777 in treating patients who have advanced or metastatic cancer. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining trastuzumab with R115777 may kill more tumor cells.

Conditions
COMPLETED
SU5416 and Paclitaxel in Treating Patients With Recurrent, Locally Advanced or Metastatic Cancer of the Head and Neck
Description

RATIONALE: SU5416 may stop the growth of head and neck cancer by stopping blood flow to the tumor. Drugs used in chemotherapy use different ways to stop tumor cells from dividing so they stop growing or die. Combining SU5416 with chemotherapy may kill more cancer cells. PURPOSE: Phase I trial to study the effectiveness of SU5416 and paclitaxel in treating patients who have recurrent, locally advanced, or metastatic cancer of the head and neck.

COMPLETED
Biological Therapy in Treating Patients With Metastatic Cancer
Description

RATIONALE: Biological therapies use different ways to stimulate the immune system and stop cancer cells from growing. PURPOSE: Phase I trial to study the effectiveness of biological therapy in treating patients who have metastatic cancer that has not responded to previous treatment.

ACTIVE_NOT_RECRUITING
GFRα4 CAR T Cells in MTC Patients
Description

This is an open-label phase 1 study to assess the safety and feasibility of autologous T cells expressing a single-chain scFv targeting GFRα4 with tandem TCR/CD3ζ and 4-1BB (TCRζ/4-1BB) co-stimulatory domains (referred to as "CART-GFRa4 cells") in patients with incurable medullary thyroid cancer (MTC).

ACTIVE_NOT_RECRUITING
Copper Cu 64 Anti-CEA Monoclonal Antibody M5A PET in Diagnosing Patients With CEA Positive Cancer
Description

This pilot clinical trial studies copper Cu 64 anti-carcinoembryonic antigen (CEA) monoclonal antibody M5A positron emission tomography (PET) in diagnosing patients with CEA positive cancer. Diagnostic procedures, such as copper Cu 64 anti-CEA monoclonal antibody M5A PET, may help find and diagnose CEA positive cancer that may not be detected by standard diagnostic methods.

COMPLETED
Cixutumumab, Everolimus, and Octreotide Acetate in Treating Patients With Advanced Low to Intermediate Grade Neuroendocrine Carcinoma
Description

This phase I trial studies the side effects and best dose of cixutumumab when given together with everolimus and octreotide acetate in treating patients with advanced low- or intermediate-grade neuroendocrine cancer. Monoclonal antibodies, such as cixutumumab, may find tumor cells and help carry tumor-killing substances to them. Everolimus may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Octreotide acetate may interfere with the growth of tumor cells and slow the growth of neuroendocrine cancer. Giving cixutumumab together with everolimus and octreotide acetate may be a better treatment for neuroendocrine cancer.

COMPLETED
Everolimus and Vatalanib in Treating Patients With Advanced Solid Tumors
Description

RATIONALE: Everolimus and vatalanib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth and by blocking blood flow to the tumor. Giving everolimus together with vatalanib may kill more tumor cells. PURPOSE: This phase I trial is studying the side effects and best dose of everolimus and vatalanib in treating patients with advanced solid tumors.

COMPLETED
Hepatic Arterial Infusion of Melphalan With Hepatic Perfusion in Treating Patients With Unresectable Liver Cancer
Description

RATIONALE: Hepatic arterial infusion uses a catheter to deliver anticancer substances directly into the liver. Drugs used in chemotherapy, such as melphalan, work in different ways to stop tumor cells from dividing so they stop growing or die. Giving drugs in different ways may kill more tumor cells. PURPOSE: This phase II trial is studying how well giving an hepatic arterial infusion of melphalan together with hepatic perfusion works in treating patients with unresectable liver cancer.

Conditions
TERMINATED
Indium In 111 Pentetreotide in Treating Patients With Refractory Cancer
Description

RATIONALE: Radiation therapy uses high-energy x-rays and other sources to damage tumor cells. Giving radiation therapy in different ways may kill more tumor cells. PURPOSE: Phase I trial to study the effectiveness of indium In 111 pentetreotide in treating patients who have refractory cancer.

TERMINATED
A Targeted Phase I/II Trial of ZD6474 (Vandetanib; ZACTIMA) Plus the Proteasome Inhibitor, Bortezomib (Velcade ), in Adults With Solid Tumors With a Focus on Hereditary or Sporadic, Locally Advanced or Metastatic Medullary Thyroid Cancer (MTC)
Description

Background: * The combination of anti-cancer drugs vandetanib (given orally) and bortezomib (given intravenously) has not been used in humans. However, both drugs have been studied separately. Bortezomib has been approved by the U.S. Food and Drug Administration (FDA) for treating multiple myeloma and mantle cell lymphoma, while vandetanib is still under investigation pending FDA approval. * Both bortezomib and vandetanib are under investigation for use in treating certain kinds of cancer. Researchers hope that the combination of these two drugs will be more effective than either of them alone. Objectives: * To determine if the combination of vandetanib and bortezomib will decrease the amount of the cancer and, if it does, to determine how long the response will last. * To determine any side effects that may occur with this combination of treatments. * To determine what doses of each drug are well tolerated and safe when given together. * To study genetic mutations in tumors to better understand how tumors grow and how these drugs interact with the tumor. Eligibility: * Patients 18 years of age and older with solid tumors that cannot be surgically removed and have either recurred or shown further growth. The tumor(s) must be able to be evaluated by X-ray, MRI (magnetic resonance imaging), and CT (computerized tomography) scanning. * Patients who have been diagnosed with medullary thyroid cancer will participate in Phase II of the study. Design: * Tumor samples may be taken at the start of the study for research purposes. * Phase I: Patient groups will be treated on an outpatient basis with vandetanib and bortezomib, given at increasing doses over four different levels to determine the maximum tolerated dose calculated by height and weight: * Doses will be given on Days 1, 4, 8, and 11 for each 28-day cycle. * Two additional levels (Level 1A and Level 1B) may be included in the study, depending on side effects at various levels. * Phase II: Patients with medullary thyroid cancer will be divided into two groups, with two patients in Group A for every one patient in Group B. No placebo will be involved in this study. * Group A: Patients will be treated with vandetanib and bortezomib at the maximally tolerated dose of the Phase I study. * Group B: Patients will be treated with bortezomib alone. * A second tumor sample may be taken. In patients with thyroid cancer, the second biopsy will be done at the 6-week evaluation (approximately 42 days after beginning). In patients with cancer other than thyroid cancer, the second biopsy will be obtained on Day 4 of either the first or second cycle, after the bortezomib infusion. * The effects of the drugs will be studied through blood samples and CT scans taken during and after various drug cycles.

COMPLETED
Pre-Operative Nodal Staging of Thyroid Cancer Using USPIO MRI: Preliminary Study
Description

The purpose of this research study is to see if a specific kind of MRI can identify small and otherwise undetected abnormal lymph nodes in patients with thyroid cancer who are undergoing surgery. The MRI is called Ultra-Small Superparamagnetic Iron Oxide Magnetic Resonance Imaging (USPIO MRI), and uses an experimental contrast agent (ferumoxytol), to try to identify these lymph nodes. The MRI uses magnetic waves to take images (pictures) of the body and is commonly used in medical testing. Ferumoxytol is FDA approved as an iron replacement product for the treatment of iron deficiency anemia in adult patients with chronic kidney disease. In this research study, the investigators want to see if Ferumoxytol will help to identify very small metastases that are not usually seen on standard MRI scans. If the use of USPIO MRI with the experimental agent ferumoxytol identifies very small metastases in lymph nodes, your surgeon may decide to remove them. After the surgery, the nodes will be stored and then analyzed to assess the ability of USPIO MRI and ferumoxytol to detect cancer in very small metastases in the lymph nodes.

COMPLETED
Trial of LBH589 in Metastatic Thyroid Cancer
Description

The purpose of this study is to evaluate the tumor response rate in patients with metastatic medullary thyroid cancer (MTC) or radioiodine resistant differentiated thyroid cancer (DTC) after receiving treatment with LBH589 20 mg by mouth, three times weekly. Time to progression, overall survival, toxicity, tolerability, and Notch1 protein expression patterns will also be evaluated.

COMPLETED
Gefitinib in Treating Patients With Metastatic or Unresectable Head and Neck Cancer or Non-Small Cell Lung Cancer
Description

This phase I trial is studying the side effects of gefitinib in treating patients with metastatic or unresectable head and neck cancer or non-small cell lung cancer. Gefitinib may stop the growth of cancer cells by blocking the enzymes necessary for their growth

Conditions
Anaplastic Thyroid CancerInsular Thyroid CancerMetastatic Parathyroid CancerRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Basal Cell Carcinoma of the LipRecurrent Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityRecurrent Inverted Papilloma of the Paranasal Sinus and Nasal CavityRecurrent Lymphoepithelioma of the NasopharynxRecurrent Lymphoepithelioma of the OropharynxRecurrent Metastatic Squamous Neck Cancer With Occult PrimaryRecurrent Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Non-small Cell Lung CancerRecurrent Parathyroid CancerRecurrent Salivary Gland CancerRecurrent Squamous Cell Carcinoma of the HypopharynxRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityRecurrent Thyroid CancerRecurrent Verrucous Carcinoma of the LarynxStage III Follicular Thyroid CancerStage III Papillary Thyroid CancerStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the HypopharynxStage III Squamous Cell Carcinoma of the LarynxStage III Verrucous Carcinoma of the LarynxStage IIIB Non-small Cell Lung CancerStage IV Lymphoepithelioma of the NasopharynxStage IV Non-small Cell Lung CancerStage IV Squamous Cell Carcinoma of the HypopharynxStage IV Squamous Cell Carcinoma of the NasopharynxStage IVA Adenoid Cystic Carcinoma of the Oral CavityStage IVA Basal Cell Carcinoma of the LipStage IVA Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage IVA Follicular Thyroid CancerStage IVA Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage IVA Lymphoepithelioma of the OropharynxStage IVA Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage IVA Mucoepidermoid Carcinoma of the Oral CavityStage IVA Papillary Thyroid CancerStage IVA Salivary Gland CancerStage IVA Squamous Cell Carcinoma of the LarynxStage IVA Squamous Cell Carcinoma of the Lip and Oral CavityStage IVA Squamous Cell Carcinoma of the OropharynxStage IVA Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IVA Verrucous Carcinoma of the LarynxStage IVA Verrucous Carcinoma of the Oral CavityStage IVB Adenoid Cystic Carcinoma of the Oral CavityStage IVB Basal Cell Carcinoma of the LipStage IVB Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage IVB Follicular Thyroid CancerStage IVB Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage IVB Lymphoepithelioma of the OropharynxStage IVB Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage IVB Mucoepidermoid Carcinoma of the Oral CavityStage IVB Papillary Thyroid CancerStage IVB Salivary Gland CancerStage IVB Squamous Cell Carcinoma of the LarynxStage IVB Squamous Cell Carcinoma of the Lip and Oral CavityStage IVB Squamous Cell Carcinoma of the OropharynxStage IVB Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IVB Verrucous Carcinoma of the LarynxStage IVB Verrucous Carcinoma of the Oral CavityStage IVC Adenoid Cystic Carcinoma of the Oral CavityStage IVC Basal Cell Carcinoma of the LipStage IVC Esthesioneuroblastoma of the Paranasal Sinus and Nasal CavityStage IVC Follicular Thyroid CancerStage IVC Inverted Papilloma of the Paranasal Sinus and Nasal CavityStage IVC Lymphoepithelioma of the OropharynxStage IVC Midline Lethal Granuloma of the Paranasal Sinus and Nasal CavityStage IVC Mucoepidermoid Carcinoma of the Oral CavityStage IVC Papillary Thyroid CancerStage IVC Salivary Gland CancerStage IVC Squamous Cell Carcinoma of the LarynxStage IVC Squamous Cell Carcinoma of the Lip and Oral CavityStage IVC Squamous Cell Carcinoma of the OropharynxStage IVC Squamous Cell Carcinoma of the Paranasal Sinus and Nasal CavityStage IVC Verrucous Carcinoma of the LarynxStage IVC Verrucous Carcinoma of the Oral CavityThryoid Gland Nonmedullary CarcinomaThyroid Gland Medullary CarcinomaTongue CancerUntreated Metastatic Squamous Neck Cancer With Occult Primary
COMPLETED
Interleukin-12 and Trastuzumab in Treating Patients With Cancer That Has High Levels of HER2/Neu
Description

Interleukin-12 may kill tumor cells by stopping blood flow to the tumor and by stimulating a person's white blood cells to kill cancer cells. Monoclonal antibodies such as trastuzumab can locate tumor cells and either kill them or deliver tumor-killing substances to them without harming normal cells. Phase I trial to study the effectiveness of interleukin-12 and trastuzumab in treating patients who have cancer that has high levels of HER2/neu and has not responded to previous therapy

Conditions
Advanced Adult Primary Liver CancerAnaplastic Thyroid CancerBone MetastasesCarcinoma of the AppendixDistal Urethral CancerFallopian Tube CancerGastrinomaGlucagonomaInflammatory Breast CancerInsulinomaLiver MetastasesLocalized Unresectable Adult Primary Liver CancerLung MetastasesMale Breast CancerMalignant Pericardial EffusionMalignant Pleural EffusionMetastatic Gastrointestinal Carcinoid TumorMetastatic Parathyroid CancerMetastatic Transitional Cell Cancer of the Renal Pelvis and UreterNewly Diagnosed Carcinoma of Unknown PrimaryOccult Non-small Cell Lung CancerPancreatic Polypeptide TumorPrimary Peritoneal Cavity CancerProximal Urethral CancerPulmonary Carcinoid TumorRecurrent Adenoid Cystic Carcinoma of the Oral CavityRecurrent Adrenocortical CarcinomaRecurrent Adult Primary Liver CancerRecurrent Anal CancerRecurrent Bladder CancerRecurrent Breast CancerRecurrent Carcinoma of Unknown PrimaryRecurrent Cervical CancerRecurrent Colon CancerRecurrent Endometrial CarcinomaRecurrent Esophageal CancerRecurrent Extrahepatic Bile Duct CancerRecurrent Gallbladder CancerRecurrent Gastric CancerRecurrent Gastrointestinal Carcinoid TumorRecurrent Islet Cell CarcinomaRecurrent Malignant Testicular Germ Cell TumorRecurrent Mucoepidermoid Carcinoma of the Oral CavityRecurrent Non-small Cell Lung CancerRecurrent Ovarian Epithelial CancerRecurrent Pancreatic CancerRecurrent Parathyroid CancerRecurrent Prostate CancerRecurrent Rectal CancerRecurrent Renal Cell CancerRecurrent Salivary Gland CancerRecurrent Small Intestine CancerRecurrent Squamous Cell Carcinoma of the LarynxRecurrent Squamous Cell Carcinoma of the Lip and Oral CavityRecurrent Squamous Cell Carcinoma of the NasopharynxRecurrent Squamous Cell Carcinoma of the OropharynxRecurrent Thyroid CancerRecurrent Transitional Cell Cancer of the Renal Pelvis and UreterRecurrent Urethral CancerRecurrent Vaginal CancerRecurrent Vulvar CancerSkin MetastasesSmall Intestine AdenocarcinomaSomatostatinomaStage III Adenoid Cystic Carcinoma of the Oral CavityStage III Adrenocortical CarcinomaStage III Bladder CancerStage III Cervical CancerStage III Colon CancerStage III Endometrial CarcinomaStage III Esophageal CancerStage III Follicular Thyroid CancerStage III Gastric CancerStage III Malignant Testicular Germ Cell TumorStage III Mucoepidermoid Carcinoma of the Oral CavityStage III Ovarian Epithelial CancerStage III Pancreatic CancerStage III Papillary Thyroid CancerStage III Prostate CancerStage III Rectal CancerStage III Renal Cell CancerStage III Salivary Gland CancerStage III Squamous Cell Carcinoma of the LarynxStage III Squamous Cell Carcinoma of the Lip and Oral CavityStage III Squamous Cell Carcinoma of the NasopharynxStage III Squamous Cell Carcinoma of the OropharynxStage III Vaginal CancerStage III Vulvar CancerStage IIIA Anal CancerStage IIIA Breast CancerStage IIIA Non-small Cell Lung CancerStage IIIB Anal CancerStage IIIB Breast CancerStage IIIB Non-small Cell Lung CancerStage IV Adenoid Cystic Carcinoma of the Oral CavityStage IV Adrenocortical CarcinomaStage IV Anal CancerStage IV Bladder CancerStage IV Breast CancerStage IV Colon CancerStage IV Endometrial CarcinomaStage IV Esophageal CancerStage IV Follicular Thyroid CancerStage IV Gastric CancerStage IV Mucoepidermoid Carcinoma of the Oral CavityStage IV Non-small Cell Lung CancerStage IV Ovarian Epithelial CancerStage IV Pancreatic CancerStage IV Papillary Thyroid CancerStage IV Prostate CancerStage IV Rectal CancerStage IV Renal Cell CancerStage IV Salivary Gland CancerStage IV Squamous Cell Carcinoma of the LarynxStage IV Squamous Cell Carcinoma of the Lip and Oral CavityStage IV Squamous Cell Carcinoma of the NasopharynxStage IV Squamous Cell Carcinoma of the OropharynxStage IVA Cervical CancerStage IVA Vaginal CancerStage IVB Cervical CancerStage IVB Vaginal CancerStage IVB Vulvar CancerThyroid Gland Medullary CarcinomaUnresectable Extrahepatic Bile Duct CancerUnresectable Gallbladder CancerUrethral Cancer Associated With Invasive Bladder CancerWDHA Syndrome