Treatment Trials

166 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Venetoclax in Combination With Cladribine and Cytarabine Alternating With Azacitidine Plus Venetoclax for the Treatment of Newly Diagnosed Monocytic AML and Active Signaling Mutated AML
Description

This phase II trial tests how well venetoclax with cladribine and cytarabine alternating with azacitidine and venetoclax works in treating patients with newly diagnosed monocytic acute myeloid leukemia (AML) and active signaling mutated AML. Venetoclax is in a class of medications called B-cell lymphoma-2 (BCL-2) inhibitors. It may stop the growth of cancer cells by blocking BCL-2, a protein needed for cancer cell survival. Chemotherapy drugs, such as cladribine, cytarabine and azacitidine, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Giving venetoclax with cladribine and cytarabine alternating with azacitidine and venetoclax may kill more cancer cells in patients with newly diagnosed monocytic AML and active signaling mutated AML.

RECRUITING
A Phase 1 Study of STX-0712 in Patients With Advanced Hematological Malignancies (CMML and AML)
Description

This is a first-in-human, multicenter, open-label, phase 1 study to evaluate the safety, PK, PD and preliminary efficacy of STX-0712 in patients with advanced CMML and AML for whom there are no further treatment options known to confer clinical benefit.

RECRUITING
Mitoxantrone for Venetoclax Resistant Acute Myeloid Leukemia
Description

This is an open label, phase 1 study for AML subjects with relapsed or refractory disease or subjects in morphologic remission with MRD+ after first line therapy with venetoclax+HMA. A preliminary dose-finding cohort will be followed by 3 expansion cohorts.

RECRUITING
Integrated Actionable Aging Assessment for Cancer Patients Pilot
Description

Aging is the greatest risk factor for cancer incidence and mortality. Geriatric screening is recommended to help with treatment discussions, inform intensity of treatment, and identify supportive care needs. Despite a strong evidence base, geriatric assessments are not implemented routinely in oncologic clinics. Similarly, important information on social determinants of health, mental health, and health behaviors are inconsistently assessed, and almost never in an integrated fashion. In an effort to support clinicians delivering the recommended goal-concordant care, the investigators will integrate assessment of geriatric issues, health behaviors, mental health, and social determinants of health into an efficient, actionable contextual assessment system for older cancer patients called Integrated Aging Assessment for Action for Cancer Patients (IA3-CP). The investigators will use D\&I strategies including co-creation engagement approaches and form-function methods to develop workflow processes that feasibly integrate the IA3-CP into usual initial assessment with the oncology team. Our objective is to develop and conduct a randomized pilot of the IA3-CP system and hypothesize that our results will show it can be implemented consistently, acted on, improve quality of care, and enhance patient-provider interactions.

COMPLETED
Enasidenib in MDS &Non-proliferative Chronic Myelomonocytic Leukemia w/o IDH2 Mutation
Description

This is a phase 1b/2, open-label, single arm study to evaluate if enasidenib is safe and effective in improving anemia and decreasing transfusion needs in subjects diagnosed with lower risk myelodysplastic syndrome (MDS) or nonproliferative chronic myelomonocytic leukemia (CMML) without a mutation in isocitrate dehydrogenase type 2 (IDH2 wildtype). Other objectives include assessment of improvements in platelet production and characterization of the mechanism of action of enasidenib in enhancing endogenous erythropoiesis.

COMPLETED
FT538 in Combination With Daratumumab in AML Acute Myeloid Leukemia
Description

This Phase I open-label dose escalation study is conducted in two stages with a primary endpoint to identify the maximum tolerated dose (MTD) of FT538 when administered with daratumumab in patients 12 years and older with advanced acute myeloid leukemia (AML) and related myeloid diseases.

COMPLETED
Multi-Ctr PII Cmb.Modality Tx Ruxolitinib, Decitabine, and DLI for Post HSCT in AML/MDS
Description

This is a multi-center, single-arm, open-label, phase II trial for the frontline treatment of relapsed AML or MDS following allo-HCT. Eligible subjects will receive up to 4 cycles of combined modality treatment. The number of cycles depends on response, toxicity, and the remaining cell dose.

RECRUITING
Hyperbaric Oxygen Therapy and Allogeneic Peripheral Blood Stem Cell (PBSC) Transplant
Description

The purpose of this study is to determine if hyperbaric oxygen therapy is safe in the setting of stem cell transplantation. This study will also determine if hyperbaric oxygen therapy improves engraftment, graft versus host disease, neutrophil count, and incidence and severity of mucositis (inflammation of the mouth or gut) and infection. This study has two cohorts. The first cohort is subjects with acute myeloid leukemia (AML) or Myelodysplastic Syndrome (MDS). The second cohort is subjects with chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia (aCML), chronic monocytic leukemia, chronic neutrophilic leukemia (CNL), myelofibrosis, and myelodysplastic/myeloproliferative (MDS/MPN) overlap syndrome. The first cohort has completed the recruitment so only the second cohort will be recruited.

RECRUITING
Naive T Cell Depletion for Preventing Chronic Graft-versus-Host Disease in Children and Young Adults With Blood Cancers Undergoing Donor Stem Cell Transplant
Description

This phase II trial studies how well naive T-cell depletion works in preventing chronic graft-versus-host disease in children and young adults with blood cancers undergoing donor stem cell transplant. Sometimes the transplanted white blood cells from a donor attack the body's normal tissues (called graft versus host disease). Removing a particular type of T cell (naive T cells) from the donor cells before the transplant may stop this from happening.

COMPLETED
Therapeutic Use of Intravenous Vitamin C in Allogeneic Stem Cell Transplant Recipients
Description

This phase 2 trial studies the effect of intravenous (IV) vitamin C repletion after myeloablative allogeneic stem cell transplant.

COMPLETED
Choline Magnesium Trisalicylate and Combination Chemotherapy in Treating Patients With Acute Myeloid Leukemia
Description

This randomized phase II trial studies how well choline magnesium trisalicylate with idarubicin and cytarabine works in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as choline magnesium trisalicylate, idarubicin, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. It is not yet know whether choline magnesium trisalicylate and combination chemotherapy is more effective than combination chemotherapy alone in treating patients with acute myeloid leukemia.

TERMINATED
AML Therapy With Irradiated Allogeneic Cells
Description

This pilot clinical trial studies if cells donated by a close genetic relative can help maintain acute myeloid leukemia (AML) complete remission (CR). Eligible patients will receive a standard induction chemotherapy. If a complete remission results they will receive irradiated allogeneic cells from a HLA haploidentical relative. Only patients who obtain a CR after the standard induction chemotherapy are eligible for the experimental therapy (irradiated haploidentical cells).

COMPLETED
Clofarabine or Daunorubicin Hydrochloride and Cytarabine Followed By Decitabine or Observation in Treating Older Patients With Newly Diagnosed Acute Myeloid Leukemia
Description

This randomized phase III trial studies clofarabine to see how well it works compared with daunorubicin hydrochloride and cytarabine when followed by decitabine or observation in treating older patients with newly diagnosed acute myeloid leukemia. Drugs used in chemotherapy, such as clofarabine, daunorubicin hydrochloride, cytarabine, and decitabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving more than one drug (combination chemotherapy) may kill more cancer cells. It is not yet known which chemotherapy regimen is more effective in treating acute myeloid leukemia.

UNKNOWN
Eltrombopag Olamine in Improving Platelet Recovery in Older Patients With Acute Myeloid Leukemia Undergoing Chemotherapy
Description

This phase II trial studies how well eltrombopag olamine works in improving the recovery of platelet counts in older patients with Acute Myeloid Leukemia (AML) undergoing induction (the first treatment given for a disease) chemotherapy. Platelet counts recover more slowly in older patients, leading to risk of complications and the delay of post-remission therapy. Eltrombopag olamine may cause the body to make platelets after chemotherapy.

TERMINATED
MEK Inhibitor MEK162, Idarubicin, and Cytarabine in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase I trial studies the MEK inhibitor MEK162 to see if it is safe in patients when combined with idarubicin and cytarabine. MEK inhibitor MEK162 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving MEK inhibitor MEK162, cytarabine, and idarubicin may be an effective treatment for acute myeloid leukemia.

COMPLETED
CPX-351 in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia or Myelodysplastic Syndrome
Description

This phase 2 clinical trial studies how well CPX-351 (liposomal cytarabine-daunorubicin) works in treating patients with relapsed or refractory acute myeloid leukemia or myelodysplastic syndrome. Drugs used in chemotherapy, such as CPX-351, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing.

TERMINATED
Lenalidomide and Combination Chemotherapy in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase I trial studies the side effects and the best dose of lenalidomide when given together with combination chemotherapy in treating patients with relapsed or refractory acute myeloid leukemia. Lenalidomide may stop the growth of acute myeloid leukemia by blocking blood flow to the cancer. Drugs used in chemotherapy, such as mitoxantrone hydrochloride, etoposide, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving lenalidomide and combination chemotherapy may be an effective treatment for acute myeloid leukemia.

COMPLETED
Treatment for Relapsed/Refractory AML Based on a High Throughput Drug Sensitivity Assay
Description

This clinical trial uses a laboratory test called a high throughput sensitivity assay in planning treatment for patients with relapsed or refractory acute myeloid leukemia. The aim is to try to identify drugs that may be effective in killing leukemia cells for those patients who will not be cured with conventional chemotherapy. This assay will test multiple drugs simultaneously against a patient's own donated blood sample. The goal is to use this laboratory assay to best match a drug to a patient's disease.

COMPLETED
Cytarabine With or Without SCH 900776 in Treating Adult Patients With Relapsed Acute Myeloid Leukemia
Description

This randomized phase II trial studies how well cytarabine with or without SCH 900776 works in treating adult patients with relapsed acute myeloid leukemia. Drugs used in chemotherapy, such as cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or stopping them from dividing. SCH 900776 may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. It is not yet known whether cytarabine is more effective with or without SCH 900776 in treating acute myeloid leukemia.

TERMINATED
Metformin+Cytarabine for the Treatment of Relapsed/Refractory AML
Description

The purpose of the study is to determine if metformin in combination with cytarabine is safe and effective. Participants in this research study have acute myeloid leukemia (AML) that has come back after initial treatment or has not gone away with initial therapy.There is evidence that metformin directly kills leukemia cells. Laboratory data have also shown that combinations of metformin with cytarabine are more efficient than each agent alone in killing leukemia cells in the laboratory.

COMPLETED
Azacitidine, Cytarabine, and Mitoxantrone Hydrochloride in Treating Patients With High-Risk Acute Myeloid Leukemia
Description

This phase I trial studies the side effects and best dose of azacitidine when given together with cytarabine and mitoxantrone hydrochloride in treating patients with high-risk acute myeloid leukemia. Drugs used in chemotherapy, such as azacitidine, cytarabine, and mitoxantrone hydrochloride, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Azacitidine may also help cytarabine and mitoxantrone hydrochloride work better by making the cancer cells more sensitive to the drugs

COMPLETED
Idarubicin, Cytarabine, and Pravastatin Sodium in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndromes
Description

This clinical trial studies idarubicin, cytarabine, and pravastatin sodium in treating patients with newly diagnosed acute myeloid leukemia or myelodysplastic syndromes. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Pravastatin sodium may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Giving idarubicin and cytarabine together with pravastatin sodium may kill more cancer cells.

COMPLETED
Sirolimus, Idarubicin, and Cytarabine in Treating Patients With Newly Diagnosed Acute Myeloid Leukemia
Description

This pilot clinical trial studies sirolimus, idarubicin, and cytarabine in treating patients with newly diagnosed acute myeloid leukemia. Sirolimus may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Drugs used in chemotherapy, such as idarubicin and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Giving sirolimus together with idarubicin and cytarabine may kill more cancer cells.

COMPLETED
Lithium Carbonate and Tretinoin in Treating Patients With Relapsed or Refractory Acute Myeloid Leukemia
Description

This phase I trial studies the side effects and best dose of tretinoin when given together with lithium carbonate in treating patients with relapsed or refractory acute myeloid leukemia. Lithium carbonate may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth. Tretinoin may help \[type of cancer\] cells become more like normal cells, and to grow and spread more slowly. Giving lithium carbonate together with tretinoin may kill more cancer cells

TERMINATED
Donor Stem Cell Transplant in Treating Patients With High Risk Acute Myeloid Leukemia
Description

This phase I trial studies the side effects of donor stem cell transplant in treating patients with high risk acute myeloid leukemia. Giving low doses of chemotherapy before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells when they do not exactly match the patient's blood. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect)

COMPLETED
Studying Biomarkers in Samples From Younger Patients With Acute Myeloid Leukemia
Description

This laboratory study is looking into biomarkers in samples from younger patients with acute myeloid leukemia. Studying samples of bone marrow from patients with cancer in the laboratory may help doctors learn more about changes that occur in DNA and identify biomarkers related to cancer

UNKNOWN
Decitabine, Cytarabine, and Daunorubicin Hydrochloride in Treating Patients With Acute Myeloid Leukemia
Description

This randomized phase II trial studies how well decitabine works when given together with daunorubicin hydrochloride and cytarabine in treating patients with acute myeloid leukemia. Drugs used in chemotherapy, such as decitabine, daunorubicin hydrochloride, and cytarabine, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Decitabine may help daunorubicin hydrochloride and cytarabine kill more cancer cells by making them more sensitive to the drugs. It is not yet known whether low-dose decitabine is more effective than high-dose decitabine when giving together with daunorubicin hydrochloride and cytarabine in treating acute myeloid leukemia.

TERMINATED
Decitabine Followed by Idarubicin and Cytarabine in Treating Patients With Relapsed or Refractory AML and MDS
Description

The goals of this study are to learn about the effectiveness, the side-effects, if waiting to give the idarubicin and cytarabine may change the side effects or effectiveness, and to identify factors to predict for responses to this therapy. The trial will examine combination of three chemotherapy drugs. These drugs are decitabine, idarubicin, and cytarabine.