32 Clinical Trials for Various Conditions
To assess the safety of administering allogenic, donor-derived CD19/CD22-CAR T cells that meet established release specifications in adults with B-cell ALL following a myeloablative conditioning regimen and Orca-T to determine if this will augment graft versus leukemia without increasing acute GVHD or graft failure.
This is a phase I/II clinical trial to determine the maximum tolerated dose (MTD) of total marrow irradiation (TMI) followed by fludarabine in the context of a myeloablative conditioning regimen for allogeneic hematopoietic stem cell transplantation (allo-HSCT), as well as to determine the efficacy of the regimen in patients with high-risk leukemia and myelodysplasia.
This study will evaluate combining stem cells from the patient's matched sibling donor (a standard CD34-selected transplant) with a second infusion of white blood cells called "CD8 memory T-cells" from their sibling donor.
This is a phase I/II clinical trial on the use of total marrow irradiation (TMI) given concurrently with fludarabine, a chemotherapy drug commonly used to treat leukemia, as a myeloablative therapy for patients undergoing Allo-HSCT. TMI is a targeted technique to deliver radiation to the bone marrow while minimizing dose to other normal organs in the body. In phase I of the clinical study, the dose of radiation to the bone marrow will be incrementally increased to determine the highest tolerated TMI dose. In phase II, the effectiveness of the TMI-fludarabine conditioning regimen utilizing that dose of radiation will be studied. Acute and long-term toxicity data as well as quality of life data will also be studied. \*Stopping criteria was met during the first dose level cohort in Phase l. The trial will not continue into Phase II as originally planned.
This phase I clinical trial evaluates the safety and feasibility of administering NY-ESO-1 TCR (T cell receptor)engineered peripheral blood mononuclear cells (PBMC) and peripheral blood stem cells (PBSC) after a myeloablative conditioning regimen to treat patients with cancer that has spread to other parts of the body. The conditioning chemotherapy makes room in the patient?s bone marrow for new blood cells (PBMC) and blood-forming cells (stem cells) to grow. Giving NY-ESO-1 TCR PBMC and stem cells after the conditioning chemotherapy is intended to replace the immune system with new immune cells that have been redirected to attack and kill the cancer cells and thereby improve immune system function against cancer.
This is a follow-up trial to NYMC 526 (NCT01461837) to assess the safety, efficacy and toxicity of administering Defibrotide prophylaxis for high-risk sickle cell or beta thalassemia patients undergoing a familial haploidentical allogeneic stem cell transplantation with CD34 enrichment and T-cell addback. This patient population historically has a risk of developing sinusoidal obstructive syndrome (SOS) and Defibrotide has demonstrated efficacy in treatment of SOS. The Funding Source is FDA OOPD.
This study is a single-center, open-label study of high-dose Melphalan HCl (hydrochloric acid) for injection (propylene glycol-free Melphalan) conducted in 24 patients, who have symptomatic multiple myeloma and qualify for autologous stem-cell transplantation (ASCT). There will be three distinct evaluation periods in this trial: a pretreatment period, a study period and a follow-up period.
The purpose of this study is to compare safety and efficacy of reduced-intensity conditioning and myeloablative conditioning regimens prior to HSCT in high-risk AML/MDS pediatric and young adult patients. This study investigates the use of two novel conditioning therapies for hematopoietic stem cell transplant (HSCT). The primary focus of both the investigators' myeloablative and reduced-intensity conditioning regimens is to reduce overall toxicity so that pediatric and young adult patients with high-risk AML/MDS with significant pretransplant comorbidities who would have been ineligible to proceed to HSCT previously can now receive potentially life-saving treatment.
This is a Phase Ib Pilot study of anti-PSMA designer T cells in metastatic prostate cancer. Subjects will receive escalating doses of T cells, with either low or moderate dose Interleukin 2. The T cells are collected by pheresis and then genetically modified, and given in a one time infusion.
Allogeneic blood or marrow transplantation (alloBMT) is a curative therapy for a variety of hematologic disorders, including sickle cell disease and thalassemia. Even when it is clear that alloBMT can give to these patients an improvement in their disease, myeloablative transplants have important toxicities and mortalities associated. The lack of suitable donors continues to be a limit to access to transplantation. Substantial progress has been made recently in the development of pre-treatment regimens that facilitate the sustained engraftment of donor marrow with reduced toxicity. Most of these regimens incorporate highly immunosuppressive drugs, which allow the reduction or elimination of myeloablative agents or total body irradiation without endangering the sustained engraftment of HLA-identical allogeneic stem cells. Preliminary results of non-myeloablative allogeneic stem cell transplantation suggest that the procedure can be performed in patients who are ineligible for myeloablative alloBMT, and that sustained remissions of several hematologic malignancies can be obtained.
Open label, dose finding trial to assess the efficacy of Treg/Tcon addback to partially matched related donor stem cells. The maximum tolerated dose will be established using 3 subjects per dose level, with an expansion cohort at the maximum tolerated dose.
This is a study designed to assess the safety of administration of up to 3 dose levels of eritoran in subjects undergoing or scheduled to undergo allogeneic bone marrow transplant (BMT). An allogeneic BMT is the transplantation of blood stem cells taken from the bone marrow or blood of another person.
This study tests the safety and tolerability of autologous anti-PSMA gene-modified T cells (designer T cells) in hormone refractory prostate cancer.
Standard therapy for multiple myeloma (MM) usually includes an autologous bone marrow stem cell transplant - a procedure where the patient is treated with high dose chemotherapy and then their own (autologous) stem cells are transplanted back into their body. Patients with multiple myeloma and high risk genes, always relapse after an autologous transplant and often die within two years from the time of their transplant. A different type of transplant allogeneic) using donor cells, may work better for high-risk Multiple Myeloma, because the donor cells may help kill the lymphoid cancer cells. This study will investigate if a matched donor stem cell transplant using a newer, reduced toxicity, chemotherapy (Flu-Bu4) is a feasible option for patients with high risk, Multiple Myeloma.
In this study two cord blood collections will be used to increase the number of cord blood cells you will receive on transplant day. We call this a "double unit" cord blood transplant. A previous study suggests double unit cord blood transplant may have a better result. The main purpose of this study is to find out how good a cord blood transplant using two cord blood collections from two different babies is at curing you of your cancer. Double unit cord blood transplants are now being studied as a way to increase the number of cord blood cells given to bigger children and adult patients. Based on studies that have already been done double unit cord blood transplant appears to be safer than if only one cord blood unit is used. However, double unit cord blood transplant is a fairly new form of treatment.
This is a phase trial to determine the maximum tolerated dose (MTD) of clofarabine in a combination with a myeloablative dose of busulfan. This is an initial step in developing a novel myeloablative preparative regimen for allogeneic hematopoietic stem cell transplantation (HSCT). While this phase I trial will initially develop the regimen in patients with refractory disease, it is expected that it will find its best application in patients with less advanced disease
RATIONALE: Drugs used in chemotherapy, such as fludarabine and cyclophosphamide, work in different ways to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Radiation therapy uses high-energy x-rays to kill cancer cells. An umbilical cord blood transplant may be able to replace blood-forming cells that were destroyed by chemotherapy and radiation therapy. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Giving sirolimus and mycophenolate mofetil after the transplant may stop this from happening. PURPOSE: This phase II trial is studying how well giving fludarabine and cyclophosphamide together with total-body irradiation followed by an umbilical cord blood transplant, sirolimus, and mycophenolate mofetil works in treating patients with hematologic cancer.
This is a multi-institutional phase II haploidentical T cell replete bone marrow transplant (BMT) study in children with high-risk leukemia. The myeloablative conditioning regimen prescribed will be Total body irradiation (TBI)-based for lymphoid leukemia and busulfan-based for myeloid leukemia. Our goal is to establish an easily exportable, inexpensive platform for haplotransplantation that has a safety profile equivalent to matched related and unrelated BMTs. The primary objective will be to estimate the incidence of 6-month non-relapse mortality (NRM), hypothesizing that NRM is \< 18%.
This study was designed to evaluate the safety and tolerability of HSC835 for clinical use as measured by the absence of graft failure at day 42 in excess of that currently observed with double umbilical cord blood (UCB) transplantation (DUCBT) with non-myeloablative (NMA) conditioning.
Background: Sickle cell disease (SCD) is an inherited disorder of the blood. It can damage a person s organs and cause serious illness and death. A blood stem cell transplant is the only potential cure for SCD. Treatments that improve survival rates are needed. Objective: To find out if a new antibody drug (briquilimab, JSP191) improves the success of a blood stem cell transplant Eligibility: People aged 13 or older who are eligible for a blood stem cell transplant to treat SCD. Healthy family members over age 13 who are matched to transplant recipients are also needed to donate blood. Design: Participants receiving transplants will undergo screening. They will have blood drawn. They will have tests of their breathing and heart function. They may have chest x-rays. A sample of marrow will be collected from a pelvic bone. Participants will remain in the hospital about 30 days for the transplant and recovery. They will have a large intravenous line inserted into the upper arm or chest. The line will remain in place for the entire transplant and recovery period. The line will be used to draw blood as needed. It will also be used to administer the transplant stem cells as well as various drugs and blood transfusions. Participants will also receive some drugs by mouth. Participants must remain within 1 hour of the NIH for 3 months after transplant. During that time, they will visit the clinic up to 2 times a week. Follow-up visits will include tests to evaluate participants mental functions. They will have MRI scans of their brain and heart.
Background: People with blood cancers often receive blood or bone marrow transplants. But even with these treatments, the risk of relapse is high. Researchers want to see if giving the transplant recipient an infusion of lymphocytes (a type of white blood cell) from their transplant donor early after the transplant can reduce that risk. Objective: To learn if giving donor lymphocytes early after a transplant will help reduce the risk of relapse for people with certain blood cancers. Eligibility: Adults aged 18-65 with high-risk leukemia, lymphoma, myelodysplastic syndrome, or multiple myeloma that does not respond well to standard treatments and/or has a high risk of relapse. Healthy potential bone marrow and lymphocyte donor relatives aged 12 and older are also needed. Design: Participants will be screened with: Physical exam Blood and urine tests Spinal tap Eye exam Dental exam Heart and lung tests Imaging scans. A radioactive substance may be injected in their arm if a PET scan is needed. Bone marrow aspiration and biopsy Some screening tests will be repeated during the study. Participants will stay at the NIH hospital for about 4 weeks. They will receive a central venous catheter. They will get chemotherapy and other drugs starting 6 days before transplant. Then they will have their transplant. They will receive donor white blood cells 7 days later. They will give blood, bone marrow, urine, and stool samples for research. They must stay near NIH for at least 100 days after transplant. Participants will have periodic follow-up visits for 5 years. Healthy donors will have 2-3 visits. They will give blood, bone marrow, white blood cells, and stool samples for research. Participation will last for 5 years....
Background: Certain blood cancers can be treated with blood or bone marrow transplants. Sometimes the donor cells attack the recipient's body, called graft-versus-host disease (GVHD). The chemotherapy drug cyclophosphamide helps reduce the risk and severity of GVHD. Researchers want to learn if using a lower dose of cyclophosphamide may reduce the drug's side effects while maintaining its effectiveness. Such an approach is being used in an ongoing clinical study at the NIH with promising results, but this approach has not been tested for transplants using lower doses of chemotherapy/radiation prior to the transplant. Objective: To learn if using a lower dose of cyclophosphamide will help people have a successful transplant and have fewer problems and side effects. Eligibility: Adults ages 18-85 who have a blood cancer that did not respond well to standard treatments or is at high risk for relapse without transplant, and their donors. Design: Participants may be screened with the following: Medical history Physical exam Blood and urine tests Heart and lung tests Body imaging scans (they may get a contrast agent) Spinal tap Bone marrow biopsy Participants will be hospitalized for 4-6 weeks. They will have a central venous catheter placed in a chest or neck vein. It will be used to give medicines, transfusions, and the donor cells, and to take blood. In the week before transplant, they will get 2 chemotherapy drugs and radiation. After the transplant, they will get the study drug for 2 days. They will take other drugs for up to 2 months. Participants must stay near NIH for 3 months after discharge for weekly study visits. Then they will have visits every 3-12 months until 5 years after transplant. Participants and donors will give blood, bone marrow, saliva, cheek swab, urine, and stool samples for research.
Background: CGD causes infections and inflammation. The only cure currently is a bone marrow transplant. Most often a perfectly matched bone marrow donor is used. Researchers want to see if they can lower the risks of using a mismatched donor. Objectives: To see if it is safe to use a related bone marrow donor who is only a partial match to a person with CGD. To see how well drugs given to a person before and after transplant help the body accept the transplant. Eligibility: People ages 4-65 with CGD for whom stem cell transplant may be a cure and who do not have a perfectly matched donor, related or unrelated. Design: Participants will be screened with: Medical history Physical exam Blood tests Participants will be admitted to the hospital about 2 weeks before the transplant. They will have blood, urine, breathing, and heart tests. They may have CT and/or MRI scans. They will have a needle inserted into their hipbone to remove marrow. They will have dental, neurologic, and psychologic tests. They will have a central catheter placed: A line will be placed into a vein in their upper chest. They will get drugs, chemotherapy, and radiation to prepare for the transplant. Participants will receive the donated cells through their catheter. The cells will be from one of their relatives. Participants will stay in the hospital about 6 weeks after the transplant. After they leave the hospital, participants will have to stay in the area with visits about 2 times a week for approximately 100 days post transplant. Then visits will be every 3 to 6 months for 2 years. Then visits will be once a year.
This study is designed to assess the safety and efficacy of using MGTA-456 in patients with Inherited Metabolic Disorders (IMD) undergoing stem cell transplantation.
The purpose of this study is to assess Tacrolimus/Methotrexate/Ruxolitinib versus Post-Transplant Cyclophosphamide/Tacrolimus/Mycophenolate Mofetil in Non-Myeloablative/Reduced Intensity Conditioning Allogeneic Peripheral Blood Stem Cell Transplantation
A Phase I trial to determine the safety of targeted immunotherapy with daratumumab (DARA) IV after total body irradiation (TBI)-based myeloablative conditioning and allogeneic hematopoietic cell transplantation (HCT) for children, adolescents, and young adults (CAYA) with high risk T-cell acute lymphoblastic leukemia (T-ALL) or T-cell lymphoblastic lymphoma (T-LLy). Pre- and post-HCT NGS-MRD studies will be correlated with outcomes in children, adolescents, and young adults with T-ALL undergoing allogeneic HCT and post-HCT DARA treatment. The study will also evaluate T-cell repertoire and immune reconstitution prior to and following DARA post-HCT treatment and correlate with patient outcomes.
Patients receiving high-dose chemotherapy/conditioning prior to stem cell transplantation (SCT) are at high risk for developing painful lesions in the oral cavity, known as oral mucositis (OM). In this high risk adult population, the study objectives are to investigate the efficacy and tolerability of Gelclair® (GEL; an FDA cleared medical device indicated for the management of painful oral lesions) and ideal timing of initiation of therapy (at the time of conditioning or after mild OM is diagnosed) for the management of oral mucositis (OM), relative to a commercially available compounded mouth wash (First® Mouthwash BLM "Magic Mouth Wash"; MMW) initiated after mild OM is diagnosed. The study may be adapted based on an interim analysis and recommendations of the interim data review committee.
HLH, HLH-related disorders, Chronic Granulomatous (CGD), HIGM1, Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX) and severe LAD-I represent primary immune disorders that are typically fatal without Hematopoietic Cell Transplant (HCT). However, transplant is often complicated by inflammation, infection and other co-morbidities. In addition, these disorders have been shown to be cured with partial chimerism, making them an ideal target for the use of reduced intensity approaches, where a portion of patients may not achieve full donor chimerism, but instead achieve stable mixed chimerism. Reduced-intensity conditioning strategies have demonstrated improved survival with decreased Treatment Related Mortality (TRM) in institutional series for patients with HLH (Cooper et al., 2006; Marsh et al., 2010; Marsh et al., 2011). However, graft loss and unstable chimerism remain challenges. An institutional case series from Cincinnati Children's Hospital demonstrated full or high-level chimerism and improved durable engraftment using intermediate (Day -14) timing alemtuzumab (Marsh et al., 2013b). This study aims to test the efficacy of the Intermediate RIC strategy in a prospective multi-center study including HLH as well as other primary immunodeficiencies where allogeneic transplant with RIC has been shown to be feasible and stable chimerism is curative.
This study is being done to determine if blood cell transplants, with either bone marrow or cord blood from unrelated donors, are effective in children with severe thalassemia and if this treatment approach has acceptable risks and side effects. This study includes a preparative regimen with Hydroxyurea, Alemtuzumab, Fludarabine, Thiotepa and Melphalan that provides intense host immunosuppression without myeloablation. The primary hypothesis is that this regimen will promote stable engraftment of unrelated donor hematopoietic cells, support normal erythropoiesis, and result in an event free survival of \> 75% of children with thalassemia major.
The hypothesis for this study is that a preparative regimen that maximizes host immunosuppression without myeloablation will be well tolerated and sufficient for engraftment of donor hematopoietic cells. It is also to determine major toxicities from these conditioning regimens, within the first 100 days after transplantation.