Treatment Trials

99 Clinical Trials for Various Conditions

Focus your search

RECRUITING
Study of Oral Administration of LP-118 in Patients With Relapsed or Refractory CLL, SLL, MDS, MDS/MPN, AML, CMML-2, MPN-BP, ALL, MF, NHL, RT, MM or T-PLL.
Description

This is a Phase 1, multi-center, open-label study with a dose-escalation phase (Phase 1a) and a cohort expansion phase (Phase 1b), to evaluate the safety, tolerability, and PK profile of LP-118 under a once daily oral dosing schedule in up to 100 subjects.

COMPLETED
Clofarabine Combinations in Relapsed/Refractory Acute Myeloid Leukemia (AML), Myelodysplastic Syndromes (MDS) and Myeloid Blast Phase Chronic Myeloid Leukemia (CML)
Description

The goal is to compare the drug combinations clofarabine/idarubicin/ara-C, clofarabine/ara-C, and clofarabine/idarubicin in the treatment of patients with Acute Myeloid Leukemia, high-grade MDS, or myeloid blast phase of Chronic Myeloid Leukemia who have relapsed following their initial therapy.

COMPLETED
PS-341 in Treating Patients With Refractory or Relapsed Acute Myeloid Leukemia, Acute Lymphoblastic Leukemia, Chronic Myeloid Leukemia in Blast Phase, or Myelodysplastic Syndrome
Description

Phase I trial to study the effectiveness of PS-341 in treating patients who have refractory or relapsed acute myeloid leukemia, acute lymphoblastic leukemia, chronic myeloid leukemia in blast phase, or myelodysplastic syndrome. PS-341 may stop the growth of cancer cells by blocking the enzymes necessary for cancer cell growth

RECRUITING
Decitabine With Ruxolitinib, Fedratinib or Pacritinib for the Treatment of Accelerated/Blast Phase Myeloproliferative Neoplasms
Description

This phase II trial studies how well decitabine with ruxolitinib, fedratinib, or pacritinib works before hematopoietic stem cell transplant in treating patients with accelerated/blast phase myeloproliferative neoplasms (tumors). Drugs used in chemotherapy, such as decitabine, work in different ways to stop the growth of tumor cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading. Ruxolitinib, fedratinib, and pacritinib may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving chemotherapy before a donor hematopoietic stem cell transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The donated stem cells may also replace the patient's immune cells and help destroy any remaining cancer cells. Decitabine, with ruxolitinib, fedratinib, or pacritinib may work better than multi-agent chemotherapy or no pre-transplant therapy, in treating patients with accelerated/blast phase myeloproliferative neoplasms.

RECRUITING
Edetate Calcium Disodium or Succimer in Treating Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome Undergoing Chemotherapy
Description

This phase I trial studies the side effects and best dose of edetate calcium disodium or succimer in treating patients with acute myeloid leukemia or myelodysplastic syndrome undergoing chemotherapy. Edetate calcium disodium or succimer may help to lower the level of metals found in the bone marrow and blood and may help to control the disease and/or improve response to chemotherapy.

RECRUITING
Cladribine, Idarubicin, Cytarabine, and Venetoclax in Treating Patients With Acute Myeloid Leukemia, High-Risk Myelodysplastic Syndrome, or Blastic Phase Chronic Myeloid Leukemia
Description

This phase II trial studies how well cladribine, idarubicin, cytarabine, and venetoclax work in patients with acute myeloid leukemia, high-risk myelodysplastic syndrome, or blastic phase chronic myeloid leukemia. Drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and venetoclax, work in different ways to stop the growth of cancer cells, either by killing the cells, by stopping them from dividing, or by stopping them from spreading.

COMPLETED
Natural Killer Cells Before and After Donor Stem Cell Transplant in Treating Patients With Acute Myeloid Leukemia, Myelodysplastic Syndrome, or Chronic Myelogenous Leukemia
Description

This phase I/II studies the side effects and best dose of natural killer cells before and after donor stem cell transplant and to see how well they work in treating patients with acute myeloid leukemia, myelodysplastic syndrome, or chronic myelogenous leukemia. Giving chemotherapy with or without total body irradiation before a donor peripheral blood stem cell or bone marrow transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

COMPLETED
Immunotherapy for Acute Myeloid Leukemia (AML), Acute Lymphoblastic Leukemia (ALL), Blast Phase Chronic Myelogenous Leukemia (BP CML), and Myelodysplastic Syndrome (MDS) Relapse After Allogeneic Transplantation
Description

The relapse of acute leukemia, MDS and blast phase CML after allogeneic transplantation affects approximately 1/3 to 1/2 of all transplant recipients and is the main cause of treatment failure. There is currently no effective standard treatment for this condition. This study will test the activity and feasibility of using a regimen to boost the immune system in order to treat AML, ALL, blast phase CML, and MDS relapse after allogeneic transplantation.

Conditions
ACTIVE_NOT_RECRUITING
Hu8F4 in Treating Patients With Advanced Hematologic Malignancies
Description

This phase I trial studies the side effects and best dose of anti-PR1/HLA-A2 monoclonal antibody Hu8F4 (Hu8F4) in treating patients with malignancies related to the blood (hematologic). Monoclonal antibodies, such as Hu8F4, may interfere with the ability of cancer cells to grow and spread.

TERMINATED
Serial Measurements of Molecular and Architectural Responses to Therapy (SMMART) PRIME Trial
Description

This phase Ib trial determines if samples from a patient's cancer can be tested to find combinations of drugs that provide clinical benefit for the kind of cancer the patient has. This study is also being done to understand why cancer drugs can stop working and how different cancers in different people respond to different types of therapy.

Conditions
Accelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAnatomic Stage IV Breast Cancer AJCC v8AnemiaAnn Arbor Stage III Hodgkin LymphomaAnn Arbor Stage III Non-Hodgkin LymphomaAnn Arbor Stage IV Hodgkin LymphomaAnn Arbor Stage IV Non-Hodgkin LymphomaAtypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveCastration-Resistant Prostate CarcinomaChronic Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveHematopoietic and Lymphoid System NeoplasmLocally Advanced Pancreatic AdenocarcinomaMetastatic Breast CarcinomaMetastatic Malignant Solid NeoplasmMetastatic Pancreatic AdenocarcinomaMyelodysplastic/Myeloproliferative Neoplasm With Ring Sideroblasts and ThrombocytosisMyelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePrimary MyelofibrosisRecurrent Acute Lymphoblastic LeukemiaRecurrent Acute Myeloid LeukemiaRecurrent Chronic Lymphocytic LeukemiaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRecurrent Hematologic MalignancyRecurrent Hodgkin LymphomaRecurrent Myelodysplastic SyndromeRecurrent Myelodysplastic/Myeloproliferative NeoplasmRecurrent Myeloproliferative NeoplasmRecurrent Non-Hodgkin LymphomaRecurrent Plasma Cell MyelomaRecurrent Small Lymphocytic LymphomaRefractory Acute Lymphoblastic LeukemiaRefractory Acute Myeloid LeukemiaRefractory Chronic Lymphocytic LeukemiaRefractory Chronic Myelogenous Leukemia, BCR-ABL1 PositiveRefractory Chronic Myelomonocytic LeukemiaRefractory Hematologic MalignancyRefractory Hodgkin LymphomaRefractory Malignant Solid NeoplasmRefractory Myelodysplastic SyndromeRefractory Myelodysplastic/Myeloproliferative NeoplasmRefractory Non-Hodgkin LymphomaRefractory Plasma Cell MyelomaRefractory Primary MyelofibrosisRefractory Small Lymphocytic LymphomaStage II Pancreatic Cancer AJCC v8Stage III Pancreatic Cancer AJCC v8Stage IV Pancreatic Cancer AJCC v8Stage IV Prostate Cancer AJCC v8Unresectable Pancreatic Adenocarcinoma
RECRUITING
Dexrazoxane Hydrochloride in Preventing Heart-Related Side Effects of Chemotherapy in Participants With Blood Cancers
Description

This phase II trial studies how well dexrazoxane hydrochloride works in preventing heart-related side effects of chemotherapy in participants with blood cancers, such as acute myeloid leukemia, myelodysplastic syndrome, chronic myeloid leukemia, and myeloproliferative neoplasms. Chemoprotective drugs, such as dexrazoxane hydrochloride, may protect the heart from the side effects of drugs used in chemotherapy, such as cladribine, idarubicin, cytarabine, and gemtuzumab ozogamicin, in participants with blood cancers.

SUSPENDED
HA-1 T TCR T Cell Immunotherapy for the Treatment of Patients With Relapsed or Refractory Acute Leukemia After Donor Stem Cell Transplant
Description

This phase I trial studies the side effects and best dose of CD4+ and CD8+ HA-1 T cell receptor (TCR) (HA-1 T TCR) T cells in treating patients with acute leukemia that persists, has come back (recurrent) or does not respond to treatment (refractory) following donor stem cell transplant. T cell receptor is a special protein on T cells that helps them recognize proteins on other cells including leukemia. HA-1 is a protein that is present on the surface of some peoples' blood cells, including leukemia. HA-1 T cell immunotherapy enables genes to be added to the donor cells to make them recognize HA-1 markers on leukemia cells.

COMPLETED
Engineered Donor Stem Cell Transplant in Treating Patients With Hematologic Malignancies
Description

This pilot phase I trial studies the side effects of engineered donor stem cell transplant in treating patients with hematologic malignancies. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells (called graft-versus-host disease). Using T cells specially selected from donor blood in the laboratory for transplant may stop this from happening.

TERMINATED
Sirolimus and Mycophenolate Mofetil in Preventing GVHD in Patients With Hematologic Malignancies Undergoing HSCT
Description

This pilot phase I/II trial studies the side effects and how well sirolimus and mycophenolate mofetil work in preventing graft versus host disease (GvHD) in patients with hematologic malignancies undergoing hematopoietic stem cell transplant (HSCT). Biological therapies, such as sirolimus and mycophenolate mofetil, use substances made from living organisms that may stimulate or suppress the immune system in different ways and stop tumor cells from growing. Giving sirolimus and mycophenolate mofetil after hematopoietic stem cell transplant may be better in preventing graft-versus-host disease.

TERMINATED
Phase I Trial of AZD1775 and Belinostat in Treating Patients With Relapsed or Refractory Myeloid Malignancies or Untreated Acute Myeloid Leukemia
Description

This phase I trial studies the side effects and best dose of WEE1 inhibitor AZD1775 and belinostat when given together in treating patients with myeloid malignancies that have returned after a period of improvement or have not responded to previous treatment or patients with untreated acute myeloid leukemia. WEE1 inhibitor AZD1775 and belinostat may stop the growth of cancer cells by blocking some of the enzymes needed for cell growth.

COMPLETED
Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts From HLA-Matched Related and Unrelated Donors in Preventing GVHD
Description

This phase II trial is for patients with acute lymphocytic leukemia, acute myeloid leukemia, myelodysplastic syndrome or chronic myeloid leukemia who have been referred for a peripheral blood stem cell transplantation to treat their cancer. In these transplants, chemotherapy and total-body radiotherapy ('conditioning') are used to kill residual leukemia cells and the patient's normal blood cells, especially immune cells that could reject the donor cells. Following the chemo/radiotherapy, blood stem cells from the donor are infused. These stem cells will grow and eventually replace the patient's original blood system, including red cells that carry oxygen to our tissues, platelets that stop bleeding from damaged vessels, and multiple types of immune-system white blood cells that fight infections. Mature donor immune cells, especially a type of immune cell called T lymphocytes (or T cells) are transferred along with these blood-forming stem cells. T cells are a major part of the curative power of transplantation because they can attack leukemia cells that have survived the chemo/radiation therapy and also help to fight infections after transplantation. However, donor T cells can also attack a patient's healthy tissues in an often-dangerous condition known as Graft-Versus-Host-Disease (GVHD). Drugs that suppress immune cells are used to decrease the severity of GVHD; however, they are incompletely effective and prolonged immunosuppression used to prevent and treat GVHD significantly increases the risk of serious infections. Removing all donor T cells from the transplant graft can prevent GVHD, but doing so also profoundly delays infection-fighting immune reconstitution and eliminates the possibility that donor immune cells will kill residual leukemia cells. Work in animal models found that depleting a type of T cell, called naïve T cells or T cells that have never responded to an infection, can diminish GVHD while at least in part preserving some of the benefits of donor T cells including resistance to infection and the ability to kill leukemia cells. This clinical trial studies how well the selective removal of naïve T cells works in preventing GVHD after peripheral blood stem cell transplants. This study will include patients conditioned with high or medium intensity chemo/radiotherapy who can receive donor grafts from related or unrelated donors.

COMPLETED
Donor Natural Killer Cells and Donor Stem Cell Transplant in Treating Patients With High Risk Myeloid Malignancies
Description

This phase I/II trial studies the side effects and best dose of donor natural killer cells when given together with donor stem cell transplant and to see how well they work in treating patients with myeloid malignancies that are likely to come back or spread. Giving chemotherapy, such as busulfan and fludarabine phosphate, before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells and natural killer cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets.

COMPLETED
A Phase 1 Dose Escalation Study of TAK-901 in Subjects With Advanced Hematologic Malignancies
Description

The purpose of this study is to determine the maximum tolerated dose (MTD) of TAK-901 in subjects with advanced hematological malignancies, and to further assess the safety and tolerability of TAK-901 at or below the MTD in an expanded cohort of subjects in order to select a dose for future studies.

COMPLETED
Tacrolimus and Mycophenolate Mofetil With or Without Sirolimus in Preventing Acute Graft-Versus-Host Disease in Patients Who Are Undergoing Donor Stem Cell Transplant for Hematologic Cancer
Description

This randomized phase II trial studies how well giving tacrolimus and mycophenolate mofetil (MMF) with or without sirolimus works in preventing acute graft-versus-host disease (GVHD) in patients undergoing donor stem cell transplant for hematologic cancer. Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body-irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune system and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving MMF and tacrolimus with or without sirolimus after transplant may stop this from happening.

Conditions
Myelodysplastic/Myeloproliferative Neoplasm, UnclassifiablePreviously Treated Myelodysplastic SyndromeRefractory Chronic Lymphocytic LeukemiaRefractory Plasma Cell MyelomaWaldenstrom MacroglobulinemiaAccelerated Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveAdult Acute Lymphoblastic Leukemia in RemissionAdult Acute Myeloid Leukemia in RemissionAdult Acute Myeloid Leukemia With t(9;11)(p22;q23); MLLT3-MLLAdult Acute Myeloid Leukemia With Inv(16)(p13.1q22); CBFB-MYH11Adult Acute Promyelocytic Leukemia With t(15;17)(q22;q12); PML-RARAAdult Acute Myeloid Leukemia With t(8;21)(q22;q22); RUNX1-RUNX1T1Atypical Chronic Myeloid Leukemia, BCR-ABL1 NegativeBlast Phase Chronic Myelogenous Leukemia, BCR-ABL1 PositiveChildhood Acute Lymphoblastic Leukemia in RemissionChildhood Acute Myeloid Leukemia in RemissionChildhood Burkitt LymphomaChildhood Chronic Myelogenous Leukemia, BCR-ABL1 PositiveChildhood Diffuse Large Cell LymphomaChildhood Immunoblastic LymphomaChildhood Myelodysplastic SyndromeStage II Contiguous Adult Burkitt LymphomaStage II Contiguous Adult Diffuse Large Cell LymphomaStage II Contiguous Adult Diffuse Mixed Cell LymphomaStage II Contiguous Adult Diffuse Small Cleaved Cell LymphomaStage II Adult Contiguous Immunoblastic LymphomaStage II Contiguous Adult Lymphoblastic LymphomaStage II Grade 1 Contiguous Follicular LymphomaStage II Grade 2 Contiguous Follicular LymphomaStage II Grade 3 Contiguous Follicular LymphomaStage II Contiguous Mantle Cell LymphomaStage II Non-Contiguous Adult Burkitt LymphomaStage II Non-Contiguous Adult Diffuse Large Cell LymphomaStage II Non-Contiguous Adult Diffuse Mixed Cell LymphomaStage II Non-Contiguous Adult Diffuse Small Cleaved Cell LymphomaStage II Adult Non-Contiguous Immunoblastic LymphomaStage II Non-Contiguous Adult Lymphoblastic LymphomaStage II Grade 1 Non-Contiguous Follicular LymphomaStage II Grade 2 Non-Contiguous Follicular LymphomaStage II Grade 3 Non-Contiguous Follicular LymphomaStage II Non-Contiguous Mantle Cell LymphomaStage II Small Lymphocytic LymphomaRecurrent Adult Acute Lymphoblastic LeukemiaRecurrent Adult Acute Myeloid LeukemiaRecurrent Adult Burkitt LymphomaRecurrent Adult Diffuse Large Cell LymphomaRecurrent Adult Diffuse Mixed Cell LymphomaRecurrent Adult Diffuse Small Cleaved Cell LymphomaRecurrent Adult Hodgkin LymphomaRecurrent Adult Immunoblastic LymphomaRecurrent Adult Lymphoblastic LymphomaRecurrent Childhood Acute Lymphoblastic LeukemiaRecurrent Childhood Acute Myeloid LeukemiaRecurrent Childhood Anaplastic Large Cell LymphomaRecurrent Childhood Large Cell LymphomaRecurrent Childhood Lymphoblastic LymphomaRecurrent Childhood Burkitt LymphomaRecurrent Grade 1 Follicular LymphomaRecurrent Grade 2 Follicular LymphomaRecurrent Grade 3 Follicular LymphomaRecurrent Mantle Cell LymphomaRecurrent Marginal Zone LymphomaRecurrent Small Lymphocytic LymphomaRecurrent Childhood Hodgkin LymphomaRecurrent Chronic Myelogenous Leukemia, BCR-ABL1 PositiveSecondary Myelodysplastic SyndromeStage I Adult Burkitt LymphomaStage I Adult Diffuse Large Cell LymphomaStage I Adult Diffuse Mixed Cell LymphomaStage I Adult Immunoblastic LymphomaStage I Adult Lymphoblastic LymphomaStage I Childhood Anaplastic Large Cell LymphomaStage I Childhood Large Cell LymphomaStage I Childhood Lymphoblastic LymphomaStage I Childhood Burkitt LymphomaStage I Grade 1 Follicular LymphomaStage I Grade 2 Follicular LymphomaStage I Grade 3 Follicular LymphomaStage I Mantle Cell LymphomaStage I Marginal Zone LymphomaStage I Small Lymphocytic LymphomaStage II Childhood Anaplastic Large Cell LymphomaStage II Childhood Lymphoblastic LymphomaStage II Childhood Burkitt LymphomaStage III Adult Burkitt LymphomaStage III Adult Diffuse Large Cell LymphomaStage III Adult Diffuse Mixed Cell LymphomaStage III Adult Diffuse Small Cleaved Cell LymphomaStage III Adult Immunoblastic LymphomaStage III Adult Lymphoblastic LymphomaStage III Childhood Anaplastic Large Cell LymphomaStage III Childhood Large Cell LymphomaStage III Childhood Lymphoblastic LymphomaStage III Childhood Burkitt LymphomaStage III Grade 1 Follicular LymphomaStage III Grade 2 Follicular LymphomaStage III Grade 3 Follicular LymphomaStage III Mantle Cell LymphomaStage III Marginal Zone LymphomaStage III Small Lymphocytic LymphomaStage IV Adult Burkitt LymphomaStage IV Adult Diffuse Large Cell LymphomaStage IV Adult Diffuse Mixed Cell LymphomaStage IV Adult Diffuse Small Cleaved Cell LymphomaStage IV Adult Immunoblastic LymphomaStage IV Adult Lymphoblastic LymphomaStage IV Childhood Anaplastic Large Cell LymphomaStage IV Childhood Large Cell LymphomaStage IV Childhood Lymphoblastic LymphomaStage IV Childhood Burkitt LymphomaStage IV Grade 1 Follicular LymphomaStage IV Grade 2 Follicular LymphomaStage IV Grade 3 Follicular LymphomaStage IV Mantle Cell LymphomaStage IV Marginal Zone LymphomaStage IV Small Lymphocytic Lymphoma
COMPLETED
Selective Depletion of CD45RA+ T Cells From Allogeneic Peripheral Blood Stem Cell Grafts in Preventing GVHD in Children
Description

This phase II trial studies how well T cell depleted donor peripheral blood stem cell transplant works in preventing graft-versus-host disease in younger patients with high risk hematologic malignancies. Giving chemotherapy and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. It may also stop the patient's immune system from rejecting the donor's stem cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Removing a subset of the T cells from the donor cells before transplant may stop this from happening.

RECRUITING
A Randomized Study of ASTX727 With or Without Iadademstat in Advanced Myeloproliferative Neoplasms (MPNs)
Description

This phase II trial compares the effect of ASTX727 in combination with iadademstat to ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative myeloproliferative neoplasms (MPNs). ASTX727 is a combination of two drugs, cedazuridine and decitabine. Cedazuridine is in a class of medications called cytidine deaminase inhibitors. It prevents the breakdown of decitabine, making it more available in the body so that decitabine will have a greater effect. Decitabine is in a class of medications called hypomethylation agents. It works by helping the bone marrow produce normal blood cells and by killing abnormal cells in the bone marrow. Iadademstat may stop the growth of tumor cells by blocking some of the enzymes needed for cell growth. Giving ASTX727 in combination with iadademstat may be more effective than ASTX727 alone in treating patients with accelerated or blast phase Philadelphia chromosome negative MPNs.

RECRUITING
BXCL701 Phase 1 R/R Acute Myeloid Leukemia or Myelodysplastic Syndrome
Description

The goal of this research study is to find the safest and most effective dose of the study drug, BXCL701, for the treatment of Acute Myeloid Leukemia (AML) or Myelodysplastic Syndrome (MDS). The names of the study drugs involved in this study are/is: * BXCL701

RECRUITING
A Phase II Study of Cladribine and Low Dose Cytarabine in Combination With Venetoclax, Alternating With Azacitidine and Venetoclax, in Patients With Higher-risk Myeloproliferative Chronic Myelomonocytic Leukemia or Higher-risk Myelodysplastic Syndromes With Excess Blasts
Description

To learn if the combination of cladribine, cytarabine, venetoclax, and azacitidine can help to control higher-risk myelodysplastic syndrome (MDS) with excess blasts and/or higher-risk chronic myelomonocytic leukemia (CMML).

COMPLETED
Clofarabine and Ara-C for the Treatment of Relapsed AML and Untreated MDS
Description

The purpose of this trial is to to determine the safety and effectiveness of therapeutic combination - Clofarabine and Cytarabine for the treatment of AML and MDS.

COMPLETED
Umbilical Cord Blood Transplant With Added Sugar and Chemotherapy and Radiation Therapy in Treating Patients With Leukemia or Lymphoma
Description

This phase II trial studies how well an umbilical cord blood transplant with added sugar works with chemotherapy and radiation therapy in treating patients with leukemia or lymphoma. Giving chemotherapy and total-body irradiation before a donor umbilical cord blood transplant helps stop the growth of cells in the bone marrow, including normal blood-forming cells (stem cells) and cancer cells. When the healthy stem cells from a donor are infused into the patient they may help the patient's bone marrow make stem cells, red blood cells, white blood cells, and platelets. The umbilical cord blood cells will be grown ("expanded") on a special layer of cells collected from the bone marrow of healthy volunteers in a laboratory. A type of sugar will also be added to the cells in the laboratory that may help the transplant to "take" faster.

TERMINATED
Phase I Dose-Escalation Trial of Clofarabine Followed by Escalating Doses of Fractionated Cyclophosphamide in Children With Relapsed or Refractory Acute Leukemias
Description

This is a Phase I study designed to determine the MTD and assess the toxicity associated with clofarabine followed by fractionated cyclophosphamide in patients \> 1 year of age or \< 21 years of age with relapsed or refractory acute leukemias. There will be 25 to 35 patients enrolled. Cohorts of 3 to 6 patients each will receive escalated doses of clofarabine followed by fractionated cyclophosphamide until the MTD is reached. There will be no intra-patient dose escalation. Single-agent cyclophosphamide will be administered by 2-hour IVI on Day 0 of cycle 1. On Days 1, 2, and 3 and Days 8, 9, and 10 clofarabine will be administered by IVI 2 hours before each dose of cyclophosphamide (see the treatment schema below). A cycle is defined as 28 days.

COMPLETED
T-Cell Depleted Allogeneic Stem Cell Transplantation for Patients With Hematologic Malignancies
Description

Objectives: 1. To evaluate disease free survival after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies. 2. To evaluate the incidence and severity of acute and chronic GVHD after Campath 1H-based in vivo T-cell depletion, in patients with hematologic malignancies undergoing non-myelo-ablative stem cell transplantation. 3. To evaluate engraftment and chimerism after Campath 1H-based in vivo T-cell depletion and non-myelo-ablative ablative stem cell transplantation in patients with hematologic malignancies.

TERMINATED
A Phase 1b/2 Study of Alvocidib Plus Decitabine or Azacitidine in Patients With MDS
Description

Alvocidib, a cyclin-dependent kinase 9 (CDK 9) inhibitor, in time-sequential therapy demonstrated significant clinical activity in secondary AML patients with prior MDS. Patients with IPSS-R intermediate and above MDS have an increased risk of developing AML and may be treated with the same chemotherapy regimens used in patients with AML. Eight Phase I or II clinical trials have been completed in patients with AML, totaling more than 400 patients with both relapsed/refractory or newly diagnosed AML. Preclinical studies have demonstrated that decitabine exposure increased the expression of NOXA, which is a specific antagonist of the survival factor MCL 1. Pharmacologic downregulation of MCL-1 via CDK 9 inhibition, as well as upregulation of the MCL-1 antagonist, NOXA, following decitabine exposure may result in enhanced antileukemic activity in MCL-1-dependent malignancies.

COMPLETED
Fludarabine Phosphate and Total Body Irradiation Followed by a Donor Peripheral Stem Cell Transplant in Treating Patients With Myelodysplastic Syndromes or Myeloproliferative Disorders
Description

This phase II trial studies the side effects and best dose of total-body irradiation when given together with fludarabine phosphate followed by a donor peripheral stem cell transplant in treating patients with myelodysplastic syndromes (MDS) or myeloproliferative disorders (MPD). Giving low doses of chemotherapy, such as fludarabine phosphate, and total-body irradiation before a donor peripheral blood stem cell transplant helps stop the growth of cancer cells. Giving chemotherapy or radiation therapy before or after transplant also stops the patient's immune system from rejecting the donor's stem cells. The donated stem cells may replace the patient's immune cells and help destroy any remaining cancer cells (graft-versus-tumor effect). Sometimes the transplanted cells from a donor can also make an immune response against the body's normal cells. Giving cyclosporine and mycophenolate mofetil after the transplant may stop this from happening.

COMPLETED
Bone Marrow Transplantation in Treating Patients With Leukemia, Myelodysplasia, or Lymphoblastic Lymphoma
Description

RATIONALE: Bone marrow transplantation may be able to replace immune cells that were destroyed by chemotherapy or radiation therapy used to kill cancer cells. Sometimes the transplanted cells from a donor can make an immune response against the body's normal cells. Eliminating the T cells from the donor cells before transplanting them may prevent this from happening. PURPOSE: Randomized phase II/III trial to compare the effectiveness of conventional bone marrow transplantation with T cell-depleted bone marrow transplantation in treating patients who have leukemia, myelodysplasia, or lymphoblastic lymphoma.